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ABSTRACT 

 Predicting the physics properties of deformable objects such as garments and fabrics is a 

challenge in robotic research. Directly measuring their physics properties in a real environment is 

difficult Bouman et al. (2010). Therefore, learning and predicting the physics property 

parameters of garments and fabrics can be conducted in simulated environments. However, 

garments have collars, sleeves, pockets and buttons that change how garments deform and 

simulating these is time-consuming. Therefore, in this paper, we propose to predict the physics 

parameters of real fabrics and garments by learning the physics similarities between simulated 

fabrics via a Physics Similarity Network (PhySNet). For this, we estimate wind speeds generated 

by an electric fan and area weights to predict the bending stiffness parameters of real fabrics and 

garments. We found that PhySNet coupled with a Bayesian optimiser can predict physics 

property parameters and improve state-of-art by 34.0% for fabrics and 68.1% for garments.

 

I. INTRODUCTION  

Robot perception and manipulation of 

deformable objects remain a key challenge. 

Due to the object’s complex geometric 

configurations and random deformations, a 

three-step process is usually adopted. The 

first step consists of modelling the objects in 

a simulated environment [2], [3] or using 

finite element methods (FEM) [4]. Then, the 

second step is about learning deformations 

of the object in the simulated environment 

while the object is manipulated [5], [6]. The 

final step comprises finding an optimised 

trajectory for manipulating the object [7], 

[8]. In these three steps, the challenge is to 

learn the stress-strain curve of these  

 

 

deformable objects [9] which depends on the 

physics property parameters of objects such 

as stiffness, area weight and damping 

factors. Therefore, learning the physics 

property parameters of deformable objects is 

key to enabling a robot to perform dexterous 

manipulation of deformable objects. 

Previous approaches that estimate physics 

property parameters of materials consist of 

either learning physics property parameters 

by aligning simulated models with real 

objects [10], [11], [12], or learning physics 

property parameters from video frames [1], 

[13], [14]. The former approaches require 
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high accuracy in aligning the objects using 

finite element methods, which are 

computationally expensive, while the latter 

approaches do not need simulated models 

that match the real objects. Therefore, 

learning from video sequences is 

computationally efficient and can be 

deployed in a robotic system where a robot 

can apply an external force on deformable 

objects. 

For robotic deformable object 

manipulations, the physics property 

parameters of deformable objects are linked 

to the deformation patterns of manipulated 

garments. For example, stiffer garments tend 

to bend less than softer garments, and softer 

garments have more complex states than 

rigid garments. Suppose we assume that a 

robot has prior knowledge of the physics 

property parameters of garments. In that 

case, it can use these parameters to fine-tune 

a manipulation plan, making the garments’ 

manipulation effective. This paper proposes 

to learn the physics similarity between 

simulated and real fabrics. For this, we have 

implemented a Physics-Similarity Neural 

Network (PhySNet; inspired by [14]), as 

shown in Fig. 1, to predict real fabric 

physics parameters from simulated fabric 

physics parameters. The core idea here is 

that measurements of physics property 

parameters are difficult to obtain in a real 

environment without needing specialised 

equipment. For example, Bouman et al. [1] 

obtained fabric’s stiffness parameters 

experimentally using specialised devices and 

designed a neural network architecture to 

regress stiffness parameters. Therefore, 

taking advantage of simulation software, 

where the physics property parameters can 

be obtained, can avoid the challenge of 

obtaining them in real environments. Hence, 

is it possible to leverage a simulation engine 

to estimate physics parameters with a neural 

network when a wind force field is applied 

to the fabrics?. To answer these questions, 

we have compiled a simulated fabric 

database to allow PhySNet to learn the 

physics similarity of simulated fabrics and to 

generate a Physics Similarity Map (PSM) 

for a fabric. After we train PhySNet, a piece 

of real fabric and a simulated fabric with 

initialised physics parameters are input into 

PhySNet to get their a Physics Similarity 

Distance (PSD). We then input the PSD into 

a Bayesian optimiser, which outputs updated 

physical parameters. We input the updated 

physics parameters into the simulator to 

generate a new simulated fabric. This 

procedure iterates until stable parameters 

(Section V-B1) are obtained from the 

Bayesian optimiser. 

PhySNet is trained on simulated data to 

learn physical similarities between simulated 

fabrics. During testing, real garments are 

input into the PhySNet, and we match 

simulated fabrics with optimal physics 

distances. In this paper, the challenge in the 

target task is to predict the physics 

properties of real garments via learning 

physics similarities between simulated 

fabrics. Garments can not be easily 

simulated in simulation engines (ArcSim 

and Blender) because they have components 

such as collars, pockets and buttons. 

Simulating garments is time-consuming and 
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computationally costly. This paper proposes 

that predictions of the physics properties of 

garments can be completed by simulating 

fabrics and learning physics similarities 

between simulated fabrics. This knowledge 

can then be used in a downstream task such 

as folding. The novelty of this paper is that 

we test on the real garments that do not 

appear in the training database, indicating 

that our PhySNet is tested on unseen 

garments. The contributions of this paper are 

threefold: 

1) We propose that physics property 

parameters of real fabrics and garments can 

be predicted from learning physics 

similarities between simulated fabrics; 

 

 

 2) We propose that predicting the physics 

property parameters of real complicated 

objects, such as garments, can be achieved 

from learning physics similarities between 

simple simulated objects such as fabrics; 

 3) We demonstrate that learning physics 

property from depth images outperforms 

learning them from RGB images. 

II. RELATED WORK 
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Previous research on the physics property 

parameters of deformable objects can be 

further divided into four categories: (i) using 

simulation models of objects to fit real 

models [12], [15]; (ii) learning model-free 

shape transformations given initial and goal 

object configurations [16], [17]; (iii) 

applying external forces and observing 

shape changes [11], [18]; and, (iv) learning 

dynamic characteristics from videos [1], 

[13], [19] by using knowledge learned from 

dynamic characteristics of simulation 

models on real models [14]. 

Tawbe et al. [15] proposed simulating 

sponges through a neural gas fitting method 

[20] rather than simulating meshes. They 

learnt and predicted the shapes of 

deformable objects without prior knowledge 

about the objects’ material property 

parameters by applying the neural gas fitting 

on simplified 3D point-cloud models. These 

3D point-cloud models focused on the parts 

of an object that had been deformed to 

improve learning. Their approach required a 

multi-step learning process to simplify the 

models and find the deformed parts. 

However, this approach was tested only on 

objects with simple geometries. Similarly, 

Arriola-Rios et al. [11] suggested learning 

materials of sponges by using a force sensor 

mounted on a finger in a robot gripper. The 

finger pressed a sponge to measure the 

applied force, which was then used to learn 

the material property parameters and to 

predict the sponge’s deformation. Wang et 

al. [18] proposed learning external robot-

exerted forces applied on objects. For this, 

they devised a Generative Adversarial 

Network (GAN) to predict their deformed 

shapes and combine the objects’ visual 

shapes (depth images) and the force applied 

to the objects. Both [11] and [18] considered 

learning from both the deformations of 

objects and the exerted forces on objects 

because exerted forces are an essential 

indicator of the physics property parameters 

as defined by the slope of the strain-stress 

curve [9] of the deformable objects. 

Therefore, learning physic property 

parameters means learning the relationship 

between strain (deformations of objects) and 

stress (exerted forces). 

Guleret al. [17] also aimed to learn the 

deformation of soft sponges, but they 

proposed a Mesh-less Shape Matching 

(MSM) approach, which comprises learning 

linear transformations between deformed 

objects. Similar to [17], Simeonov et al. [16] 

proposed that deformable objects can be 

manipulated by representing objects using 

cloud points rather than object models and 

calculating manipulating motion plans to 

estimate transformations between the object 

initial and goal configurations. Model-free 

physics property and deformation learning 

do not require learning actual object physics 

property parameters but conceptualising 

how objects can be deformed when an 

external force acts into the object. The above 

methods are, however, constrained to regular 

patterns of shape changes. 

Bouman et al. [1] proposed to learn the 

physics property parameters of fabrics from 

videos. Bouman et al. focused on fabric 

stiffness, and their approach consisted of 
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learning statistical features of the image’s 

frequency domain of fabric videos and using 

a regression neural network to predict the 

stiffness parameters of fabrics. Similarly, 

Yang et al. [13] proposed predicting the 

physics property parameters of fabrics by 

learning the dynamics of fabrics from videos 

using a CNN-LSTM network architecture. 

However, these methods are constrained to 

fabrics with regular shapes, while our 

approach extends to garments with irregular 

and complex shapes. 

Wang et al. [12] proposed reparameterising 

the stiffness of fabrics as a piecewise linear 

function of the fabrics’ strain tensor. That is, 

they sampled the strain tensor with principle 

strains (maximum and minimum normal 

strains) and strain angulars, combined as a 

matrix of 24 parameters for stretching 

stiffness (i.e. resistance when fabrics are 

stretched) and 15 parameters for bending 

stiffness (i.e. resistance when fabrics are 

bent). To measure the stiffness of the 

fabrics, they opted for a FEM approach that 

aligned simulated meshes with the fabrics. 

They considered that stiffness is nonlinear, 

making simulations and stiffness 

measurements more accurate. However, the 

FEM method requires considerable time to 

compute accurately the deformation of 

objects which limits this approach’s 

applicability to real-time robotic 

manipulation. 

Learning from simulated objects to predict 

the physics property parameters of real 

objects has been proposed by Runia et al. 

[14]. They learnt physics similarity distances 

between simulated fabrics and predicted 

physics property parameters of real fabrics, 

where they decreased physics similarity 

distances between real and simulated fabrics 

by fine-tuning parameters of simulated 

fabrics via a Bayesian optimiser. Their 

approach paved the way for a novel 

alternative that frees a network from 

complicated simulation-reality 

approximations such as [12] and extends to 

regular shape fabrics, of which deformations 

are more complex, e.g. [11], [15], [18]. Our 

approach is similar to [14], but we propose 

to use depth information to learn the 

dynamics of fabrics and garments from their 

depth images and opt to use a triplet loss 

function instead of a pair-wise contrastive 

loss. Compared with [14], where they only 

used one material, our proposed pipeline can 

predict the physics property parameters of 

seven fabric materials and three garments. 

Wu et al. [21] proposed learning newton 

properties (mass, density, etc.) of rigid 

objects (cubes) from unlabelled video 

sequences. They constructed a database that 

contains video sequences of objects in 

different scenarios: sliding down an inclined 

surface, attached to a spring and falling onto 

various surfaces. An unsupervised 

representation learning model has been 

introduced to learn the newton properties of 

the objects. Their work demonstrated the 

effectiveness of learning physics (newton) 

properties from videos, which is the focus of 

this paper. However, they only tested rigid 

objects, while in this paper, we focus on 

deformable objects of fabrics and garments. 
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Learning the physics properties of objects 

can also be achieved from learning 3D 

images. Gao et al. [22] introduced a 

TreeVes-Net to learn blood dynamics from 

CT angiography images (3D images). They 

proposed a tree-structured recurrent neural 

network (TreeVes-Net) that learns the 

bloody dynamics to diagnose myocardial 

ischemia. Their paper revealed that learning 

physics properties could be completed by 

learning object dynamics from 3D images. 

In this paper, we have used the ‘ArcSim’ 

simulator [23] to simulate garments instead 

of using a finite element method for 

modelling fabrics and garments. We opted 

for ArcSim because it has been 

experimentally validated on ground truth 

obtained by mechanically modelling the 

stiffness-strain relationship of garments. Our 

experiments do not focus on investigating 

the mechanical aspects of fabrics and 

garments. That is, we do not measure the 

displacement between each pixel of the 

fabric/garment from one state to another. 

Instead, we focus on the physical similarity 

between simulated and real fabrics/garments 

and use this similarity to adjust the physics 

parameters of simulated fabrics. The 

information shared between simulated and 

real fabrics/garments is only the physics-

property parameters being optimised as 

discussed in Section III and IV. 

III. FABRIC PHYSICS 

PROPERTY PARAMETERS 

The relationship in bending stiffness 

between strain and stress, as given by [12], 

is: 

 

where F is the external force, and ke is the 

material’s bending stiffness. Figure 2 shows 

a visualisation of Eq. 1. In Figure 2, 

triangles 123 and 143 represent two faces of 

a piece of fabric where a force is applied to 

bend the fabric from triangle 123 to triangle 

143. h1 and h2 are the normals of the two 

triangles, while E is an edge vector of the 

edge 13, which is shared by both the 

triangles 123 and 143. u is a bending model 

described in [12]. In Eq. 1, Wang et al. [12] 

treated the bending stiffness, ke, as a linear 

piecewise function of the reparametrisation 

sin(θ/2)(h1 + h2) −1 . To estimate bending 

stiffness, the bending angle, θ (in Fig. 2), are 

set to 0◦ , 45◦ and 90◦ . For each value of θ, 

the bending stiffness is measured five times. 

These five measurement points represent 

bending behaviours of a piece of fabric in 

[12] experiments. Therefore, there are 15 

points represented by a matrix of size 3 × 5 

(angles × bending measurement points). We 

represent our predicted bending stiffness of 

the fabrics using this matrix representation 

(e.g. Figure 4). 

Bending stiffness is difficult to be measured 

directly without specialised devices [1], but 

bending stiffness can be derived from the 

strain-stress curve of materials [9]. 

Therefore, if a neural network can learn the 

strain-stress relationship, it is possible to 

estimate the bending stiffness of fabrics and 
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garments. That is, by observing 

deformations of fabrics and garments, if the 

predicted external forces (stresses) match 

measured external forces and deformations 

between simulated and real fabrics and 

garments, we can establish that the predicted 

bending stiffness can be approximated to the 

real values. We refer to the match between 

deformations of real and simulated objects 

as Physics Similarity Distances (PSD, 

Section IV-A). 

 

In our experiments, we use an electric fan to 

wave real fabrics to exert an external force. 

We, therefore, predict wind speed, which is 

proportional to wind force, as Fw = 1/2Aρv 

where Fw is the wind force, ρ is the air 

density and A is the surface area of a 

deformable object. In our experiments, the 

fabrics used in our experiments have a 

surface area of 1 m 2. 

IV. MATERIALS AND METHODS 

A. PhySNet 

In this paper, we propose a Physics 

Similarity Network (PhySNet), which is a 

Siamese network [14], [24] that clusters 

input data according to their labels. PhySNet 

comprises a convolutional neural network 

that extracts features from input data and a 

fully connected layer that maps the extracted 

features into a 2D Physics Similarity Map 

(PSM). We express our PhySNet asP = fθ 

(I), where fθ denotes a neural network that 

contains convolutional layers and fully 

connected layers parameterised by the 

parameters θ, and I denotes an input video 

frame. We define P as a physics similarity 

point, which is a point on the PSM mapped 

from an input fabric image I. With these 

points in the PSM, we define a Physics 

Similarity Distance (PSD) as: 

 

where i and j are the ith and jth physics 

similarity points in the PSM of two different 

fabric images. Input fabric images can either 

be RGB or depth images of fabrics labelled 

according to their physics property 

parameters and external parameters. The 

triplet loss compares positive and negative 

pairs. Positive pairs are an anchor sample 

and a positive sample within the same class 

(the physics property parameters in this 

paper). In contrast, negative pairs are an 

anchor sample and a negative sample of a 

different class from the anchor sample. The 

introduction of triplet loss ensures that 

samples of the same classes are clustered 

together while different classes are separated 

on the physics similarity map. Therefore, 

negative and positive samples are not 

directly compared, but negative and positive 

pairs are compared. 
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The triplet loss compares positive pairs and 

negative pairs. Positive pairs are an anchor 

sample and a positive sample within the 

same class (the physics property parameters 

in this research). In contrast, negative pairs 

are an anchor sample and a negative sample 

with a different class from the anchor 

sample. The introduction of triplet loss 

ensures that samples of the same classes are 

clustered together while different classes are 

separated on the physics similarity map. 

Therefore, negative and positive samples are 

not directly compared, but negative and 

positive pairs are compared, which performs 

better than other loss functions, such as 

contrastive loss. The triplet loss is less 

greedy than the contrastive loss. A triplet 

loss also ensures a margin between negative 

pairs and positive pairs, while contrastive 

loss only uses a margin for dissimilar pairs, 

irrespective of the positive pairs. This 

difference leads to the contrastive loss 

function reaching a local minimum while the 

triplet loss continues to optimise and 

perform better. That is, [25] shows that the 

contrastive loss underperforms with respect 

to the triplet loss by 14.1% 

Images are triplet-classed, meaning that 

every input contains three images, one 

defined as an anchor and the other as 

positive and negative samples of the anchor. 

The input triplets are mapped onto the PSM 

through PhySNet as physics similarity 

points. Thus, our loss function is defined as: 

 

where Ppositive, Pnegative and Panchor are 

the positive, negative and anchor points, 

respectively. An anchor point is a point 

output from the PhySNet with an input of an 

image of a piece of fabric. A positive point 

is a point output from the PhySNet with an 

input of an image of a piece of fabric of the 

same physics property parameters as the 

anchor one. A negative point is a point 

output from the PhySNet with an input of an 

image of a piece of fabric with different 

physics property parameters to the anchor 

one. PP and NP are the positive pair and 

negative pair, respectively. The loss function 

aims to shorten the Physics Similarity 

Distances (PSDs) between the positive pairs 

and increase the PSDs between the negative 

pairs. The implementation of Margin 

ensures that the triplet loss does not 

concentrate on ‘‘simple pairs’’ (the positive 

and negative pairs that have a large 

difference, meaning they are easy to be 

clustered) but on ‘‘hard pairs’’ (the positive 

and negative pairs that have a small 

difference, meaning they are difficult to be 

clustered), facilitating the learning of 

physics similarities between simulated 

fabrics. 

B. BAYESIAN OPTIMISATION 

Initialised physics parameters are input into 

the simulation engine, and output simulated 

fabrics. The simulated and real fabrics are 

fed into a trained PhySNet, which outputs 
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their physics distances. In this paper, we aim 

to close the gap between simulation and 

reality by finding physics parameters for the 

simulation that resemble those observed in 

reality. For this, we use Bayesian 

optimisation to find these physics 

parameters for the simulation, and the 

objective is to minimise physics distances 

between simulated and real fabrics. 

Bayesian optimisation is used to find the 

optimal value of a black-box function, where 

the black box means that the structure and 

parameters of the function are unknown. The 

black-box function is ‘‘expensive to 

evaluate’’, which means evaluating the 

function is computationally costly. In this 

paper, Gaussian Processes are used to 

estimate the prior and posterior distribution. 

This optimisation comprises a black-box 

function f (X) that takes X as input (where 

the dimension of X is usually less than 20). 

Firstly, a random function (also called a 

‘‘prior’’) is used when several initial values 

of X (termed as querying points) are used to 

evaluate f (X), and some values of f (X) are 

obtained. These values of f (X) are used to 

update the ‘‘prior’’ to form a posterior 

distribution, which is then used to construct 

an acquisition function. The acquisition 

decides the next querying point of X, which 

is the next value of X to be input into f (X) 

to evaluate the value of f (X). The Bayesian 

optimisation terminates when an optimal 

value of f (X) is found. 

To minimise physics distances, we thus 

convert physics distances into negative 

values (for example, convert a physics 

distance of 100 to -100) and maximise 

negative values (optimal values are 0). We 

have used Botorch [26] to implement our 

Bayesian Optimisation. Figure 1 shows our 

pipeline. 

According to [27], Bayesian optimisation is 

used for expensive-to-evaluate functions. In 

our experiments, evaluating the physics 

similarity distance between a simulated 

fabric and a real fabric/garment requires 

updating the simulated fabric’s physics 

parameters, modelling a new fabric with 

ArcSim and rendering the new fabric with 

Blender, which requires time. If traditional 

optimisation algorithms such as stochastic 

gradient descent are applied, generating 

sufficient samples within a short time is 

impractical for this experiment. Therefore, 

only Bayesian optimisation was tested in the 

experiments. 

V. EXPERIMENTS 

A. FABRICS AND GARMENTS 

DATASET 

For our experiments, we collected both 

simulated and real fabric samples. To 

simulate fabrics, we use ArcSim [28], which 

is a deformable object simulator that uses 

triangle meshes and linear piecewise 

functions (Section III). Inputs to ArcSim are 

the physics parameters of fabrics, including 

stretching stiffness, bending stiffness and 

area weights, and external environmental 

parameters, including gravity, wind speed 

and wind direction. In this experiment, our 

search space for the Bayesian Optimisation 

(as defined in Section IV-B) includes 
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bending stiffness, wind speed and area 

weight; thus, we keep other parameter 

settings in their default values.The external 

parameters are (as we set them in ArcSim): 

(i) wind speed (from 1 to 6 m/s), (ii) fabric’s 

area weight (see Table 1), and (iii) Bending 

stiffness (from 0.1 to 10 times of standard 

bending stiffness parameters, [12], [14]). We 

defined this search space based on the 

experimental settings described in [14]. 

We have tested seven different materials; 

tablecloth, interlock, denim, sparkle fleece, 

nylon, ponte roma and jet set (red-violet). 

We choose these materials because they are 

common in the textile industry. Table 1 

shows the search space for the different 

materials in terms of their area weight, and 

the area weight is determined by finding the 

manufacturer’s information. We set the 

search space for wind speeds to 1-6 m/s. 

ArcSim outputs a sequence of 60 3D 

models. The length of each video is 3 

seconds with a sampling frequency of 20Hz. 

We input these 60 3D models into Blender 

[2] to render them into a video sequence of 

depth images, where each 3D model 

corresponds to one frame. Because depth 

images are sensitive to cameras’ relative 

positions with respect to the captured object, 

randomising cameras’ positions in the 

simulation environment can enhance 

PhySNet to recognise real fabrics and 

garments. Therefore, we randomised the 

camera locations in Blender and captured a 

fabric from six different locations. That is, 

we translate in ArcSim in the x (from 1 to 6) 

and z (from -0.5 to 0.3) axes while leaving 

fixed the y axis to 0.5. Similarly, we rotate 

the camera in ArcSim for z (from -260◦ to 

280◦ ) while we set the rotation in x to 90◦ 

and y to 0◦ . Bending stiffness settings are 

referenced in [12], where they provided 

measured values of the materials used in our 

experiments. Therefore, our search space for 

bending stiffness is from 0.1 to 10 of 

measured values in [12]. 

For each simulated material, we randomise 

30 combinations of physics property 

parameters and external environmental 

parameters constrained within the search 

space defined above. Combinations are 

uniformly distributed, and each combination 

comprises a sequence of 60 3D models. We 

input these 60 models into the Blender 

engine and render the models with 6 

rendering camera positions. Therefore, we 

captured 10,800 images for each material, 

which are labelled with their combination 

number. ArcSim [28] and Blender [2] are 

used for generating images of simulated 

fabrics in this experiment. However, images 

not containing entire fabrics due to the 

camera positions are not included and 

removed from the dataset. 

We use an Asus Xtion camera to collect real 

fabric and garment samples. An electric fan 

waves fabrics with wind speeds varying 

from 2.4-3.1 m/s. The varying wind speeds 

can test whether our approach can detect 

fabrics and garments’ physics property 

parameters under different wind speeds. For 

each real sample, a video of 60 frames in 

length is recorded at a sampling frequency 

of 24 fps (2.5 s in real-time for each video). 
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Wind speeds are measured by an electronic 

anemometer (model AOPUTTRIVER AP-

816B), and area weights are measured using 

an electric scale. All fabrics are cut into a 

square of 1 m × 1 m such that their weights 

scaled by the electric scale are unit area 

weights. Our testing points for wind speeds 

are located near the fabric. A list of the 

equipment used for these experiments and 

the simulated and real images can be found 

at 

https://liduanatglasgow.github.io/PhySNetB

ayOptim/. 

 

B. EXPERIMENTAL METHODOLOGY 

We have implemented PhySNet in Pytorch. 

PhySNet consists of 2D convolutional layers 

with a PReLU layer and a MaxPool2D layer 

between adjacent convolutional layers. The 

convolutional layers are followed by a fully 

connected layer with three linear layers and 

a PReLU between adjacent linear layers. 

Input images are 1-channel depth with an 

image resolution of 256 × 256. We have 

used an Adam optimiser with a batch size of 

32 and a learning rate of 1 × 10−2 . A 

learning scheduler with a step size of 8 and a 

decay factor of 1 × 10−1 has been used for 

the optimiser. We train our PhySNet for 30 

epochs with a batch size of 32. Our PhySNet 

is trained on simulated fabrics images but 

tested on real, unseen fabrics and garments. 

Our code is available at 

https://liduanatglasgow.github.io/PhySNet-

BayOptim/. 

We compare the performance of our 

PhySNet network with the Spectrum 

Decomposition Network (SDN) proposed in 

[14]. This research was inspired by SDN, 

where the authors proposed learning wind 

speeds and fabric area weights. Other 

research on the physics property parameters 

of fabrics includes [1], [13]. However, they 

all trained and tested their proposed 

approaches directly on real fabrics rather 

than learning from simulated fabrics. SDN is 

the first research on the physics property 

parameters of fabrics from learning physics 

similarities between simulated fabrics when 

fabrics are waved under a wind field. Runia 

et al. [14] showed that the difficulties in 

measuring the physics property parameters 

of real fabrics using specific and 

sophisticated instruments could be solved by 

learning from physics similarities between 

simulated fabrics. 

The SDN is a network that uses a Fourier 

transformation to convert time-domain RGB 

images into frequency-domain maps and 

extracts the top K maximum-frequency parts 

of the maps as features. For our baseline, we 

compare the performance of four networks; 

two networks are PhySNet trained on depth 

and RGB images, and the other two are SDN 

trained on depth and RGB images. 

1) ESTIMATING PHYSICS 

PARAMETERS OF FABRICS AND 

GARMENTS 

https://liduanatglasgow.github.io/PhySNet-BayOptim/
https://liduanatglasgow.github.io/PhySNet-BayOptim/
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This experiment aims to find real fabrics’ 

physics and external environmental 

parameters. Therefore, we adjust parameter 

settings in the simulation engine to generate 

a simulated fabric and calculate its PSD to 

the real fabric on the PSM. We halt the 

optimisation once a stable PSD is found 

between a simulated and real fabric (ref. 

Section IV-B). As discussed in Section III, 

we only compare predicted results of wind 

speeds and area weights because we do not 

have ground truth for the bending stiffness 

of the real fabrics. Still, wind speeds serve 

as indicators of the bending stiffness of the 

real fabrics and act as our ground truth to 

validate our proposed approach. 

The Bayesian Optimiser described in section 

IV-B is used to find physics and external 

environmental parameters for simulated 

fabrics that can minimise the physic 

similarity distance between the simulated 

and real fabrics. Parameters optimised in this 

experiment are bending stiffness, wind 

speeds and area weights, which are 

normalised to [−1, 1]. Values for the 

parameters are initially set as 0. The search 

space for these parameters is the same as the 

search space set for simulated data as in 

Section V-A. We halt the Bayesian 

Optimisation when updated parameters 

become stable. That is, parameter updates do 

not change by more than 10% over the last 

three epochs. Wind speed and area weight 

estimations are compared with the measured 

ground truths, i.e. from the anemometer and 

electric scale. 

Simulating fabrics is easier than simulating 

garments because fabrics have simple 

geometric shapes, whereas garments have 

complex shapes. If PhySNet can recognise 

real garments while being trained on 

simulated fabrics, we can bypass simulating 

complex garments. We hypothesise that 

dynamics and physics property parameters 

are constant between garments and fabrics 

made of similar materials and can enable 

PhySNet to predict garment physics property 

parameters by training on simulated fabrics. 

Therefore, we test this hypothesis by 

allowing PhySNet to predict the physics and 

external environmental parameters for real 

garments from the simulated fabrics. We 

selected three garments: a T-shirt, a shirt and 

jeans. To measure the physics parameters of 

these garments, we use our PhySNets trained 

on the grey interlock (for the T-shirt), a 

white tablecloth (for the shirt) and the black 

denim (for the jeans) because these garments 

are made of these fabrics and have similar 

physics parameters. 

 

The electric fan waves garments and the 

wind speeds are recorded using the 

anemometer. Likewise, we follow the same 

methodology for fabrics to capture garments 

as video sequences. Garment images are 

input directly into PhySNet, and the 

Bayesian optimiser is used to find the 
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garments’ physics parameters. A garment is 

compared with a simulated fabric of the 

same material rendered with parameters set 

to 0. Updated parameters from the Bayesian 

optimiser are input into the simulator to 

output an updated fabric, and it is then 

compared to the real garments until stable 

parameters are obtained. We halt the 

Bayesian Optimisation when updated 

parameters become stable, as in the fabrics 

experiment. 

VI. EXPERIMENTAL RESULTS 

A. CLUSTERING ACCURACY OF 

PhySNet AND SDN 

From Table 2, we observe that the best 

performance for clustering accuracy is on 

the SDN-trained network while using depth 

images. Whereas the network with the 

lowest accuracy is PhySNet trained on depth 

images. Overall, SDN has a better 

performance than PhySNet. This is because 

a Fourier transform outputs a frequency map 

for the transformed images, and on this 

frequency map, areas of the fabrics that 

deform fast from the waving wind are 

amplified while static areas are attenuated. 

The SDN benefits from these frequency 

maps while ignoring ‘less deformed’ areas, 

but this causes an information loss and 

overfitting of the training data. This loss of 

information can potentially reduce the 

network’s ability to recognise real fabrics, as 

shown in Section VI-B. 

From Table 2, PhySNet trained on RGB 

images performs better than PhySNet trained 

on depth images. For depth images, changes 

in physics parameters do not have the same 

levels of influence on spatial characteristics 

as texture characteristics. Depth information 

remains relatively constant between 

simulated and real fabrics, which means that 

depth is suitable for finding the physics 

parameters of real fabrics and generalising 

better across domains. 

 

B. PREDICTING FABRICS’ AND 

GARMENTS’ PHYSICS PARAMETERS 

Table 3 shows that the best performance is 

obtained using the PhySNet trained on depth 

images. Our approach improves the state-of-

art (SDN trained on RGB images) by 34.0%. 

Both the SDNs (trained on depth and RGB 
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images) experience failures in finding the 

physics parameters of real fabrics (denoted 

as ’F’). The reason for the failures is that the 

SDN failed to map real fabric images onto 

the physics similarity map; hence, the 

Bayesian optimiser cannot find optimal 

values for the physics parameters of real 

fabrics. As discussed in Section VI, the SDN 

has the disadvantage of information loss that 

affects the network’s ability to predict the 

physics property parameters of real fabrics. 

From Table 3, we also observe that PhySNet 

trained on depth images outperforms 

PhySNet trained on the RGB images. Depth 

images directly capture deformations, while 

RGB images capture changes in the texture 

and colour manifolds that are not descriptive 

of deformations and structural changes. 

Figure 4 shows the predicted bending 

stiffness of real fabrics. Bending stiffness 

parameters are represented as matrices (as 

defined in Section III). Therefore, we use 

surface plots to display predicted values. 

From Figure 4, we can observe that black 

denim is the stiffest material, while the 

sparkle fleece is the softest material because 

black denim has the highest predicted 

bending stiffness while sparkle fleece has 

the lowest predicted value. These 

measurement results align with human 

intuitions, where denim (i.e. jeans) is stiffer 

than sparkle fleece (i.e. sweaters). 

Table 4 shows the Bayesian Optimisation 

results for garments. We can observe that 

PhySNet trained on depth images performs 

best while predicting garments’ physics 

properties and external environmental 

parameters. However, from Table 4, we also 

observe that predictions for garments are not 

as accurate as the predictions for fabrics due 

to the different shapes between the garments 

and fabrics. SDN RGB and depth and the 

PhySNet RGB failed to optimise correctly 

and converged to incorrect values for each 

of the three garments. The results, similar to 

section VI-B, indicate the disadvantages of 

using RGB images and frequency maps for 

finding real-garment physics parameters. 

Predicted stiffness parameters are shown in 

Figure 4. We can observe that jeans are 

stiffer than T-shirts and shirts, which aligns 

with human intuition. These results suggest 

that it is possible to estimate the physics 

property parameters of garments by training 

PhySNet on simple fabrics with a mean 

average error of 17.2% for wind speeds and 

6.5% for area weight parameters. Overall, 

we obtained a performance improvement 

between our approach (PhySNet on depth 

images) and SDN on RGB images (state of 

the art) is 68.1%   

 

 

VII. CONCLUSION 
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In this paper, we proposed that predicting 

the physics property parameters of real 

fabrics and garments can be achieved by 

learning physics property similarities 

between simulated fabrics. Our PhySNet 

outperforms the state-of-art by 34.0% for 

fabrics and 68.1% for garments. However, 

there are limitations to our proposed 

approach. That is, only bending stiffness is 

considered, and physic’s property 

parameters that determine strains 

(deformations) consist of stretching 

stiffness, bending stiffness and damping. 

The reason to limit the physics parameters is 

to reduce the search space for the Bayesian 

Optimisation and guarantee convergence. 

Further research involves developing a 

better optimisation method to optimise all 

physics property parameters. We also show 

that PhySNet is more effective while 

training on one rather than multiple 

materials. Our future research focuses on 

devising a methodology to enable a neural 

network to be trained on different materials 

and predict the physics property parameters 

of different fabric materials. Indeed, we 

envisage that a general purpose of using 

PhySNet for predicting the physics property 

parameters of fabrics and garments is to 

facilitate robotic fabric and garment 

manipulation. 

In our experiments, we used an electric fan 

to exert an external force (waving) on 

fabrics and garments. We have shown that a 

robot can interact with garments [30], [31], 

and we envisage that robots can exert these 

forces on fabrics and garments while the 

robot interacts with the objects. A robot can 

stretch objects to measure stretching 

stiffness and facilitate manipulating objects 

by grasping and dropping them to observe 

their deformations. From these interactions, 

the network can effectively learn the physics 

parameters of deformable objects. Also, 

future work can focus on an ablation study 

of using data (video sequences) from 

multiple perspectives to verify the proposed 

approach’s effectiveness and applicability. 
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