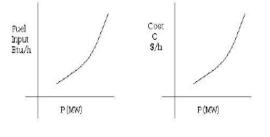
Dispatching Economically Restricted Loads Using a Biogeography-Based Optimization Algorithm and an Improved Harmony Search Algorithm

U.SASHICHANDRA, VIJAYA JOYTHI,

Assistant Professor, Assistant Professor, Department of Humanities and Science, Samskruti College of Engineering and Technology, Ghatkesar.

Abstract


HSA, IHS, and BBO algorithms are compared in this work for handling restricted economic load dispatch issues in a power system with a limited number of available resources. New solution vectors are generated using the IHS algorithm, which makes use of numerous harmony memory consideration rates and dynamic pitch adjustment rates. They were tested in a test system with twenty producing units with ramp rate restrictions and valve point loading constraints, and the algorithms worked well. IHS approach outperforms both Harmony search and Biogeographybased optimization algorithm in terms of total fuel cost and convergence characteristics, as shown by the simulation results.

Introduction

Customers' requests for electrical energy must be met promptly and efficiently, as mandated by national legislation, by the vast majority of the world's electric power companies. Despite meeting the country's power needs, the utility must also guarantee that the electricity is produced at the lowest possible cost. This means that the entire demand must be distributed among the generating units in a way that reduces the system's overall generation cost while still meeting the economic needs of the system. There are several ways to calculate how much power is created by each committed producing unit in order to keep overall costs down while still meeting demand for electricity.

Economic dispatch is one such method. "The operation of generating facilities to provide energy at the lowest cost to reliably customers, recognising supply any operational restrictions of generation and transmission infrastructure" might be termed "economic dispatch". Allocating as generating among committed units in order reduce meet limits and energy to consumption in terms of dollars per hour is

an essential optimization job in power system operation. Figure 1 depicts a simple heat rate curve, which depicts the inputoutput relationship of a thermal unit (a). When the heat rate curve is converted from Btu/h to \$/h, the fuel cost curve depicted in Fig. 1 may be seen (b)

A variety of derivatives-based approaches, including as lambda iteration, gradient technique, Lagrangian Multiplier method, Dynamic Programming method, were previously used to tackle ELD issues. Because to valve point effect, ramp rate limits, and so on, contemporary generators' input-output characteristics are non-linear. Genetic algorithm (GA), particle swarm optimization (PSO), and artificial bee colony (ABC) optimization approaches have recently been used to tackle the ELD issue

with non-smooth cost functions, and have proved effective. The Harmony search algorithm is one of these more contemporary methods. As in improvised music, the goal of the "harmony search" (HS) algorithm is to find the best possible harmony by analysing the pitches of the individual artists involved. The process of musical improvisation resembles that of optimal design, which is concerned with arriving at the best possible solution. Harmony is defined by the pitch of each musical instrument, exactly like a collection of variables. The Upgraded Harmony Search Algorithm (IHSA) is an improved version of HS. This article discusses the IHS method for solving the ELD issue with the addition of Ramp Rate limitations.

Problem Formulation

The main objective of economic load dispatch problem is to minimize

$$\min f = \sum_{i=1}^{N} F_i(P_i) \tag{1}$$

Where F_i is the total fuel cost for the generator unity i (in h/h), which is defined by equation:

$$F_i(P_i) = a_i P_i^2 + b_i P_i + c_i(2)$$
(2)

Where a_i , i and c_i are cost coefficients of generator i. Two constraints are considered in this problem, i.e., the generation capacity of each generator and the power balance of the entire power system.

Constraint 1: This constraint is an inequality constraint for each generator. For normal system operations, real power output of each generator is within its lower and upper bounds and is known as generation capacity constraint given by

$$P_{Gi}^{min} \le P_{Gi} \le P_{Gi}^{max} \tag{3}$$

Constraint 2: This constraint is an equality constraint. In which the equilibrium is met when the total power generation must equals the total demand P_D and the real power loss in transmission lines P. This is known as

power balance constraint can be expressed as given in

$$\sum_{i=1}^{N} P_G = P_D + P_L \tag{4}$$

Ramp rate limit constraint: The power generated, Pi0 by the ith generator in certain interval may not exceed that of previous interval Pi0 by more than a certain amount URi, the up-ramp rate limit and neither may it be less than that of the previous interval by more than some amount DRithe down ramp rate limit of the generator .These give rise to the following constraints.

As generation increases

$$P_i - P_{i0} \leq UR_i$$

 $P_{i0} - P_i \leq DR_i$

As generation decreases

and

 $max(P_i^{min}, P_{i0} - DR_i) \le P_i \le \min(P_i^{max}, P_{i0} + UR_i)$ (5)

Valve point loading constraint:

The valve-point loading is taken in consideration by adding a sine component to the cost of the generating units. Typically, the fuel cost function of the generating units with valve-point loadings is represented in Fig.2.

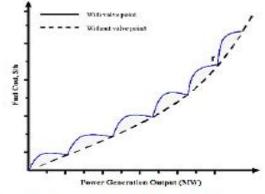


Fig. 2 Power generation output Vs Fuel cost

Harmony Search Algorithm

An algorithm developed by Geem that mimics the improvisation of musicians is

known as the harmony search (HS) algorithm. A musician's improvisations are equivalent to the local and global search strategies used in optimization techniques, and the harmony they create may be compared to an optimization solution vector. Instead of a gradient search, the HS method employs a stochastic random search. Harmony memory and pitch adjustment rate are used to discover the solution vector in the search space using this approach. In order to obtain the optimal value for the objective function, the HS algorithm employs the notion of how aesthetic assessment helps to reach the perfect condition of harmony. The HS method has a few parameters and is straightforward to apply conceptually and practically. A number of optimization issues have been solved using this technique. The HS algorithm's optimization approach is as follows:

- Initialize the optimization problem and algorithm parameters.
- Initialize the harmony memory.
- Improvisation of a New Harmony memory.
- > Update the harmony memory.
- Check for stopping criteria.
 Otherwise, repeat step 3 to 4

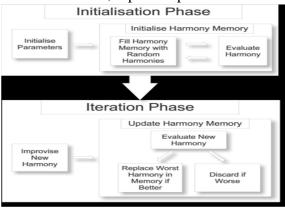


Fig. 3: Block Diagram of Harmony search Algorithm

Implementation of the Proposed Approach

The proposed approach to solve ELD problem is described in the following steps.

- Input the system parameters, minimum and maximum limits of control variables.
- Choose the harmony memory size HMS, pitch adjusting rate PAR, bandwidth BW and the maximum number of improvisations NI.
- Initialize the harmony memory HM as explained in the section III-B. While initializing, all the control variables are randomly generated within their limits.

Start the improvisation.

- For each solution vector in HM, evaluate the objective functions.
- Improvise the New Harmony memory as explained in the section III-C.

No.of Generators	P _{min} (MW)	P _{max} (MW)	A (\$/MWhr)	B (\$/MWhr)	C (\$/MWhr)
1	50.0	300	95	6,8000	0.0070
2	50.0	450	30	4.0000	0.0055
3	50.0	450	45	4.0000	0.0055
4	0.0	100	10	0.8500	0.0025
5	50.0	300	20	4.6000	0.0060
6	50.0	450	90	4.0000	0.0055
7	50.0	200	42	4.7000	0.0065
8	50.0	500	46	5.0000	0.0075
9	0.0	600	55	6.0000	0.0085
10	0.0	100	58	0.5000	0.0020
11	50.0	150	65	1.6000	0.0045
12	0.0	50	78	0.8500	0.0025
13	50.0	300	75	1.8000	0.0050
14	0.0	150	85	1.6000	0.0045
15	0.0	500	80	4.7000	0.0065
16	50.0	150	90	1.4000	0.0045
17	0.0	100	10	0.8500	0.0025
18	50.0	300	25	1.6000	0.0045
19	100.0	600	90	5.5000	0.0080

- Perform the non-dominated sorting and ranking on the combined existing and New Harmony memory
- Choose the best harmony memory from the combined solution vectors as given in the section III-D for the next improvisation.
- ✤ Check for stopping conditions. If the

number of improvisations has been reached stop the algorithm. Otherwise, go to step 5.

· · ·						
LOAD DEMAND(MW)	BBO TOTAL COST(\$/hr)	HSA TOTAL COST(\$/hr)	IHSA TOTAL COST(\$/hr)			
925	1232.90	1020.56	846.324			
1000	1438.00	1120.12	989.94			
1500	2487.52	2332.41	2234.32			
2000	4257.37	4167.8	3979.26			
2500	6477.52	6421.93	6224.65			

Biogeography Based Optimisation Algorithm

BBO, suggested by Dan Simon in 2008, is a stochastic optimization technique for solving multimodal optimization problems. It is based on the concept of biogeography, which deals with the distribution of species that depend on different factors such as rain fall, diversity etc.The main parts of BBO algorithm includes

Migration

The algorithm steps of BBO are as follows

Step 1: Initialization of the BBO parameters. Step 2: The initial position of SIV of each habitat should be randomly selected while satisfying different equality and inequality constraints of ELD problems. Several numbers of habitats depending upon the population size are being generated. Each habitat represents a potential solution to the given problem.

Step 3: Calculate each HSI i.e. value of objective function for each i-th habitat of the population set n for given

emigration rate μs , immigration rate λs and species S.

Step 4: Based on the HSI values some elite habitats are identified.

Step 5: Each non-elite habitat is modified by performing probabilistically immigration and emigration operation. Step 6: Species count probability of each habitat is updated using equation11. Mutation operation is performed on the non-elite habitat and HSI value of each new habitat is computed.

Step 7: Feasibility of a problem solution is verified i.e. each SIV should satisfy equality and inequality constraints.

Step 8: Go to step 3 for the next iteration.

Step 9: Stop iterations after a predefined number of iterations.

Simulation Results

Using the 20-generator test system, the fuel cost coefficients and generation limitations for each generator are shown in Table 1. Harmony Search algorithm (HSA), IHSA and Biogeography based optimization algorithm (BBO) are compared in a simulation and the results are displayed in Table 2. With regard to valve point loading, the findings are shown in Table 3.

Table 3 : Comparison of BBO, HSA, IHS with valve point loading						
LOAD DEMAND(MW)	BBO TOTAL COST(\$/hr)	HS TOTAL COST(\$/hr)	IHS TOTAL COST(\$/hr)			
925	872.425	838.14	687.79			
1000	1036.84	1016.54	976.98			
1500	2266.82	2157.54	1004.87			
2000	4016.83	3354.98	2900.889			
2500	6266.83	5735	4089.13			

RAMP RATE CONSTRAINT:

The convergence characteristics obtained for all the three algorithms with the inclusion of ramp rate limit costraint is shown in Fig. 4. The comparison of fuel cost with ramp rate is shown in Fig. 5.

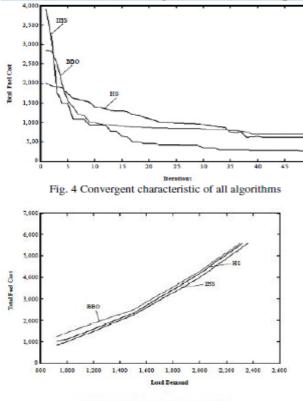


Fig 5 Comparison of Fuel Cost Solution

VALVE POINT LOADING CONSTRAINT:

The convergence characteristics obtained for all the three algorithms with the inclusion of valve point loading constraint is shown in Fig. 6. The comparison of fuel cost with valve point loading is shown in Fig. 7.

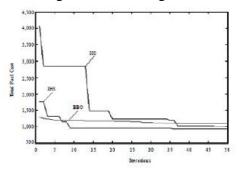


Fig. 6 Convergence Characteristics Between IHS, HS, BBO with Valve point loa

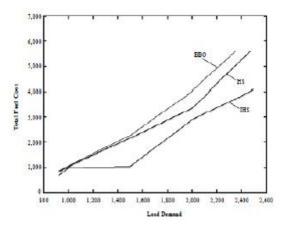


Fig. 7 Comparison of fuel cost from the table with valve point loading

Conclusion

It is possible to solve the economic load dispatch issue in the power system by applying the IMPROVED HARMONY SEARCH ALGORITHM (IHS). the HARMONY SEARCH **ALGORITHM** (HSA), and the BIOGEOGRAPHY BASED OPTIMIZATION ALGORITHM (BBO). The simulation results show that the IHS algorithm outperforms both the HS and BBO algorithms in terms of performance and overall fuel cost. HS algorithm may be well-known, but it is considered innovative and imaginative when it is compared to BBO and IHS under restrictions of ram prate and valve point loading in order to save fuel costs.

Because of these two factors, the Improved Harmony Search algorithm is superior than previous algorithms.

- ✓ When compared to alternative options, the total fuel cost is the lowest.
- ✓ When compared to others, the reaction time of convergence characteristics is very rapid.

References

[1] Leandro dos Santos Coelho, Viviana Cocco Mariani, An improved harmony search algorithm for power economic load dispatch, Energy Conversion and Management ,Elsevier, 50 (2009), p. 2522–2526, May 2009.

[2]M. Mahdavi, M. Fesanghary, E. Damangir, An Improved Harmony Search Algorithm for Solving Optimization Problems, Elsevier, Applied Mathematics and Computation, Vol. 188, p. 1567-1579, 2007.

Geem ZW, Kim JH, Loganathan GV, A new heuristic optimization algorithm: Harmony search. Simulation 2001; 76: 60-68.

Hadi Sadat, "Power System Analysis", WCB/McGraw-Hill, 1999.

D.P. Kothari and J.S. Dhillon, Power System Optimization, Prentice-Hall of India, 2006.

Lee KS, Geem ZW. A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Elsevier, Computational Methods Appl. Mech. Eng 2005; 194(36– 38):p.3902–33.

J. Mahdavi M, Fesanghary M and Damangir E (2007), An Improved Harmony Search Algorithm for Solving Optimization Problems, Elsevier, Applied Mathematics and Computation, Vol. 188, p. 1567-1579. Bhattacharya, Chattopadhyay, P.K. Biogeography-based optimization for different economic load dispatch problems, IEEE Trans. on Power Systems, Vol. 25, p. 1064-1077, May 2010.

L.D.S. Coelho, V.C. Mariani, Combining of chaotic differential evolution and quadratic programming for economic dispatch optimization with valve point effect, IEEE Trans. on Power Systems, Vol. 21, p. 989– 996, May 2006.