SURVEY ON PROBABILISTIC DETERMINATION OF CORONA VIRUS INFECTION

Sunanda Dixit*¹, Aman Rai², Afra³, Arfa Noorain H⁴, Abdullah Ali Hood Abdullah Ba Abbad ⁵

¹Associate Professor, Computer Science and Engineering Department, BMS Institute of Technology and Management, Bangalore, India

²Student, Computer Science and Engineering Department, BMS Institute of Technology and Management, Bangalore, India

ABSTRACT

One of the most morbid infections in recent times is Covid-19, having a potential to cause death in human beings. Covid-19 are a set of RNA viruses which lead to deadly disease in both birds and mammals. This pandemic already has led to tens of millions of deaths and infected several times more people worldwide. The exponential expansion in COVID-19 patients is overpowering medical care frameworks over the world. The death rate is increasing drastically as a result. An effective testing method is to conduct swab tests in order to determine if the person is infected with Covid-19. This becomes very handy in the medical field as diagnosis is rather quick and simple. However, medical image processing provides further information, and is an emergent field in recent times. We have proposed the use of modern Image Processing mechanism to detect COVID-19 patients using the dataset of CT (Computed Tomography) scan images in an automated manner. This dataset is used to perform a comparison between different CT scan images of COVID-19 positive cases together with Normal lung CT images.

Keywords:

machine learning, image processing, vgg-16 model, Covid-19, CT scan

I. INTRODUCTION

COVID-19, the deadly disease caused by the infamous Novel Coronavirus, originated in the wet markets of Wuhan. China somewhere around November 2019. The successor to SARS-Cov virus of 2003, the SARS-Cov-2, spread exponentially within a very short span of time. The World Health Organization had no option but to declare this spread as a global widespread in March 2020. The coronavirus has an affinity to the lung receptor cells of human beings and as such, results in pneumonia, which is easily identifiable on CT scan images. The better known manifestation of this illness are fever, dry cough and general fatigue. Other symptoms range from loss of taste, smell, difficulty breathing in severe cases, and body pain. Difficulty breathing and dry cough is caused due to lung damage caused by the virus. This damage is easily recognized by radiologists with the help of X-Rays or CT scan images. Such radiological examinations help not just diagnose, but also quantify and analyze the extent and nature of damage done by the virus. A quick comparison between standard X- Rays, and HRCT scans is useful to appreciate the benefits of CT scan images in certain classes of illness. Although X-Rays provide a quick and simple method to determine whether there is something wrong with the lungs, they fail to detect certain deeper anomalies. HRCT scan images however bring out the best details, which definitely helps doctors accurately study and classify lung damage, and prescribe the correct treatments for the same. Furthermore, HRCT scan images produce three dimensional images, whereas X-Rays product two dimensional images. The severely burdened healthcare systems across the world definitely benefit from the availability of these techniques in the diagnosis and treatment of patients. As of now, there is no definite treatment, and symptomatic treatment is administered to patients. In this work, we propose the use of CT scan to analyze and detect COVID-19 in patients in an automated manner. Giving the large scale of the infection across the globe, automated detection to preliminarily rule out nonCOVID-19 or otherwise normal CT scan images, promises radiologists more time to focus

on the patients who are in need of specialized evaluation and treatment. In this work we propose the use of CT scan images, image processing and machine learning methodologies to detect COVID-19 infection in the patients exhibiting manifestation.

II. LITERATURE SURVEY

Among 167 individuals, around 5 had in the start been negative on the RT-PCR test, yet CT scan had positive results with a trend in line with viral pneumonia. Subsequently, all the Covid diagnosed people were kept under isolation for COVID-19 pneumonia. Among the five patients with RT-PCR negative and CT results showing infection in the beginning, the CT score of involvement was 4(median) [1]. The greatest score for the same was 14, and the least was 2.High risk individuals for COVID19 infection, the CT chest scan pneumonia features (viral) can show before positive RT-PCR test results. Key Results were 5 patients infected showed negative results in the start at RT-PCR testing but showed positive CT results.

Comparison to RT-PCR study involved 51 people with the mean age of people being 45 years. Swabs of the throat were taken and followed up RT-PCR testing. Mean time between by development of symptoms and CT scanning was 2-6 days. Among 51 patients, 36 in the start had RT-PCR results showing COVID-19. 12 among the 51 patients with two RT-PCR tests done tested positive for COVID19. Therefore in this study [[2] 50 of 51 patients or 98% was the detection rate for CT which was found to be more than that for RT-PCR, which was 36 out of 51 patients or about 70 percent.In a span of time, the RT-PCR gave positive, then negative, or negative and then positive tests[3]. This was compared with the nature of CT scan studies in the same period to determine the relative stability in the results as compared to RT-PCR. Surprisingly, 75 % of patients with false RT-PCR results, has positive CT Scan findings. Hence, CT scanning is highly sensitive at diagnosis Covid-19 and is a prime

candidate for accurate diagnosis in badly hit areas.

of Infection" Relationship Duration to Symptomatic patients in China during Jan and Feb 2020 were examined for typical CT findings with regard to time between infection and first CT scan[4]. The particular features were bilateral and peripheral ground-glass opacities. Some patients even had normal lung features in early cases. The longer the duration between infection and CT scan, the more the features that were seen on the CT scan images, indicating more lung damage. Most patients with late state Coronavirus showed lung damage on both sides. Prediction models like LSTM were utilized to determine next-7 day trends of death, recovery etc. VGG16 based model were put to use in analyze X-ray images. It allows speedy detection of COVID-19, allowing an accuracy of up to 99 percent using augmented dataset. Concluded that high magnited infection areas have similar characteristics and disease spread is greater in coastal areas. Investigation into humidity, temperature and terrain can thus be undertaken [5].

A rapid review and meta-analysis proposed in [6] shows that utilizing RT-PCR as reference, the affectability of chest CT scan in COVID-19 is 99%, recommending that CT can possibly be utilized as a helping analytic instrument. The most well-known imaging indication of patients with COVID-19 is GGO, and the probability of respective contribution was 84%. Nonetheless, the nature of proof was low over all results. The main goal of the paper [7] was to compare the performance between radiologists and AI system on differentiating NCP from other common pneumonia and normal controls. Their AI system interpretation was entirely superior to that of junior radiologists and comparable to mid-senior radiologists.

Amalgamation of CT-Scan and RT-PCR test is more accurate in diagnosing Covid-19 in emergency settings, and also helps in preventing false negative reporting proposed in [8]. With respect to this journal, it is found that when a subsequent RT-PCR test is carried out, in majority of patients who were previously tested negative were later tested positive for covid-19 infection. Thus, the amalgamation is helpful in diagnosing covid-19 accurately and mitigate false negative reports which helped them to isolate patients and prevent the spread of infection. [9] Researchers have started to implement deep learning and other algorithms to distinguish between COVID 19 and non-COVID-19 CT scans, assess the seriousness of the disease to direct the course of care, and explore various secondary COVID-19 applications in order to function of chest CT and the further the computer-aided process for detection. The purpose of this brief analysis is to encourage the advancement of image processing technology research to aid from the monitoring and diagnosis of COVID-19.

AI Intelligent Assistant Analysis System proposed in [10], a program focused on deep learning, was specifically designed for COVID-19 .This AI program has a neural network of modified 3D convolution and a hybrid V-Net with bottleneck structures. Chest CT combined with analysis by the AI Intelligent Assistant Analysis System was able to accurately evaluate pneumonia in COVID-19 patients [10]. Investigating whether instances of Covid-19 can be distinguished by applying AI and deep learning approaches on chest X-ray images is proposed in [11.Two different schemes were studied in this paper. COVID-19 and Normal image classification using eight separate pretrained CNN models while training was conducted with and without augmentation of the image.

Three diagnostic guidelines and four treatment recommendations are included in the rapid guide covering patients with suspected or confirmed COVID-19 with varying degrees of disease severity from outpatient facility or hospital admission to home discharge in the care route[12]. The rapid guide provides implementation, tracking and assessment considerations and describes research needs. The guide will be applicable to physicians, hospital administrators and planners, policy makers, hospital architects, biomedical engineers, medical physicists. operations workers, and control officers involved in water/sanitation and infection prevention Third-world countries tend to have missing research and needs aid, in both technology and healthcare and the proper conglomeration of both these domains[13]. Novel techniques are being applied to imaging like pixelbased labeling. It's still too early to firmly establish when these methods will become mainstream. However, there have been huge leaps, especially with Coronavirus thrusting the medical and technological community to move ahead at a fast pace.

Examining the role of CT scan as primary imaging method for diagnosis is proposed in [14]. They concluded that certain issues plague the community such as bad research design, partial method sections with improper description of biased patient cohorts, no gold standard establishment, and sparse discussion. The paper is a warning about the results of hurried review process in the scientific community.

[15] The detection model for COVID-19 was created given the difficulties that prevail in the field of detection of COVID-19 using data adopted from multiple sources. In a holistic approach, this paper had visualized taking into consideration the crucial problems that are overwhelming about the domain. For all peculiar ones, the outcomes were reasonably consistent. [16] Studies have shown that CT is quite sensitive to diagnose CT when used in place of RT-PCR. However, this is contrary to some societal guidelines. This study aims to determine whether CT-scan should be used solely, or in combination with RT-PCR, or not at all, especially in areas where RT-PCR might not be available. One limitation is the fact that most studies are outdated and perform poor evidence regarding the role of CT imaging in diagnosing Covid-19. Hence, stronger correlations must be made.

For large-scale image classification, they assessed very deep convolutional networks (up to

19 weight layers) in the work proposed in [17]. It was shown that the depth of representation is advantageous for the accuracy of the classification. They have also demonstrated that their models generalize well to a broad range of tasks and datasets, matching or exceeding more complex pipelines of recognition built around less deep image representations.

Finding the accuracy of diagnosis of frequent imaging methods, Chest X ray and CT, for diagnosis of COVID-19 in the general emergency populace in the UK and to find out the relation among imaging features and final results among these patients is proposed in [18]. A detailed was conducted for checking analysis the association between CXR and CT scan. It was CXR discoveries were not observed that significant statistically or meaningfully clinical, but on the other hand, CT has considerably improved diagnostic execution over CXR in COVID-19. Deep learning method is proposed in [19], they retrospectively collected 5372 patients from 7 cities or provinces with computed tomography images. The deep learning system achieved good success in distinguishing COVID. The deep learning system automatically focused without human assistance on irregular areas that displayed compatible characteristics with recorded radiological findings from other pneumonia in the 4 external validation sets.

A deep learning model, the COVID-19 detection neural network (COVNet), was developed in this retrospective and multicenter study to extract visual features from volumetric chest CT scans COVID-19 detection. for То assess the robustness of the model, CT scans of communityacquired pneumonia (CAP) and other nonpneumonia anomalies were included. It was concluded that A deep learning model would reliably recognize and distinguish coronavirus 2019 from community-acquired pneumonia and other lung conditions[20].

The following table shows the different methods employed for Corona Virus detection.

Sl. No	Year	Authors	Title	Pros	Cons
1.	2020	Xie X et	"Chest CT for typical	Chest CT proof of	CT scans are more
		al	coronavirus disease 2019	viral pneumonia will	costly than RT-
			(COVID-19) pneumonia:	precede positive	PCR, however
			Relationship to negative	reverse-	has restricted access
			RT-PCR testing"	transcription polymera	to RT-PCR in
				se chain reaction test	different regions.
				findings in patients	
				at high risk for	
				coronavirus disease	
				2019 (COVID-	
				19) infection.	
2.	2020	Fang Y	"Sensitivity of chest CT	The results of this	The RT-PCR test
		et al.	for COVID-19:	paper reinforce the use	showed low
			comparison to RT-PCR"	of chest CT in patients	efficiency and the
				with clinical	reasons for the low
				and epidemiologic	efficiency of viral
				features consistent	nucleic acid
				with COVID-19	detection may
				infection to screen for	include immature
				COVID-19, especially	development of
				when the results of	nucleic acid
				RT-PCR tests are	detection
				negative.	technology,

					1
					detection rate
					variance from
					various suppliers,
					low viral load of
					patients, or incorrect
					clinical sampling.
3.	2020	Ai T et	"Correlation of chest CT	Chest CT is	Since COVID-19 is
		al.	and RT-PCR testing for	particularly susceptible	highly infectious, it
			coronavirus disease 2019	to the	is a
			(COVID-19) in China: A	2019 coronavirus	significant threat for
			Report of 1014 cases"	disease diagnosis	healthcare professio
				(COVID-19).	nals and
				For the existing	other patients to use
				COVID-	imaging equipment
				19 identification in	on COVID-
				epidemic areas, chest	19 patients. Huge
				CT can be regarded as	and complex pieces
				a foremost instrument.	of equipment are
					CT scanners.
4.	2020	Adam	"Chest CT Findings in	CT scans are good	Ct scans might fail
		Bernhei	Coronavirus Disease-19	at predicting	to detect
		m	(COVID-19):	coronavirus infection	coronavirus early on
		et al.	Relationship to Duration	that has occurred many	in the infection as
			of Infection"	days prior.	this isn't enough
			0 0		time for the virus to
					make significant
					change in the lungs
5.	2020	Moutaz	"COVID-19 Prediction	To identify the	Special attention
		Alazab	and Detection Using	presence of COVID-	must be paid to
		et al	Deep Learning"	19 using chest X-ray	the avoidance of
				images, a diagnostic	over fitting in the
				model using VGG16	un-augmented
				was suggested. The	dataset, especially
				model allows the rapid	when increasing the
				and reliable detection	epochs as the
				of COVID	validation slowly
				19, enabling it to	improves in
				achieve an F-measure	the beginning and
				of 99% using	then
				an augmented dataset.	stops improving
					when the epochs are
					increased.
6.	2020	Meng L	"Chest computed	This suggests that	Because of most
		Y et al	tomography for the	in the early stage,	studies performed in
			diagnosis of patients with	chest CT scanning will	China, the paper
			coronavirus disease 2019	efficiently capture	only included case
			(COVID-19): a rapid	lung lesions. GGO	series and case
			review and meta-	is the most common	reports, case
			analysis"	imaging manifestation	collection of

				of COVID-19 patients.	included studies
				and the likelihood	that could add bias.
				of bilateral	some cases may be
				involvement was 84%.	overlapping
					between studies,
					and there was also
					great variability
					between included
					studies.
7.	2020	Zhang K	"Clinically applicable AI	To avoid a potential	It is also important
		et al	system for accurate	memorization bias, the	to distinguish NCP
			diagnosis, quantitative	follow-up AI-assisted	from common
			measurements, and	diagnostic test by	influenza or
			prognosis of COVID-19	junior radiologists was	other forms of
			pneumonia using	performed 2 weeks	pneumonia, such
			computed tomography"	after the initial test.	as viral pneumonia
				The performance was	and bacterial
				significantly improved	pneumonia, because
				compared to the	seasonal flu
				previous one and was	also causes viral
				comparable to that of	pneumonia.
				the senior radiologists	
8.	2020	Daniël	"Added value of chest	The paper recommend	Because There is
		A et al.	computed tomography in	the use of chest CT in	currently no solid
			suspected COVID19: an	combination with RT	reference standard
			analysis of 239 patients"	PCR testing in patients	for COVID-19, it
				with suspected	was necessary to
				COVID-19 in	depend on ruling-
				emergency	out other
				departments, provided	hypothesis and
				that adequate	multidisciplinary
				infection control	agreements in
				protocols in CT suites	patients with RT-
				are in place.	PCR results that
					were negative,
					which could have
					led to false-positive
					CT scan results.
9.	2020	Molly D	"The role of	Chest CT offers more	CT not be used
		et al.	chest computed	precise results when it	for diagnosis, but
			tomography in the	is critical to initiate	that recommendatio
			management of COVID-	care as well as isolate	n has been revised
			19: A review of results	the patient to prevent	due to the lack of
			and recommendations"	the virus from	widespread
				spreading.	availability of
					laboratory COVID-
					19 testing and
					sensitivity
					problems.

10.	2020	Hai-tao	"Automated detection and	Pneumonia in COVID-	Many critically ill
		Zhang et	quantification of COVID-	19 patients can be	patients are unable
		al.	19 pneumonia: CT	correctly diagnosed by	to perform CT
			imaging analysis by a	Chest CT combined	exams because of
			deep learning-based	with examination by	hypoxemia and the
			software"	the uAI	inability to move.
				Intelligent Assistant	Secondly, when
				Analysis System.	detecting atypical
					lesions, there was
					a need to change the
					AI Intelligent
					Assistant Analysis
					System manually.
11.	2020	Muham	"Can AI Help in	Artificial intelligence	The algorithm fails
		mad E.	Screening Viral and	exhibits an excellent	if no obvious light
		et al.	COVID-19 Pneumonia?"	performance in	focus edge function
				classifying COVID-	occurs in the deep
				19 pneumonia given	layer and other
				that the system is	techniques have to
				essentially trained	validate this type of
				from a big dataset and	COVID-19 cases.
				significantly improve	
				the efficacy in the	
				screening of COVID-	
				19 positive cases.	
12.	2020	Elie A	"Use of Chest Imaging in	There is development	Finally, studies
		et al.	the Diagnosis	based on standard	addressing
			and Management of	methodology,	contextual factors,
			COVID 19: A WHO	the consideration of	including cost, cost
			Rapid Advice Guide"	contextual factors, its	effectiveness,
				reporting according	equity effects,
				the RIGHT statement,	acceptability and
				and the consideration	viability of the
				of stakeholder's views.	various modalities
					of imaging, are
12	2020	Honon	"Deer	Decically, CNNa ware	required.
15.	2020	Failai Forhot	Deep	basically, CININS were	shortage of health
		George	nulmonary medical	lunge LI Note word	madical parsonnal
		E Sakr	jmaging: recent undates	ungs, U-ivets were	and PACs
		L. Saki,	and insights on COVID	characteristics and	and FACS.
		Rima	10"	most of the	
		Kilany	17	contributions	
		Kilaliy.		emphasized	
				comparing the	
				effectiveness of	
				common architectures	
				and detect covid-19	
14	2020	Michael	"Chest Commuted	It was concluded in	CT scan rooms must
17,	2020	miniati	Chesi Computeu	it was concluded in	CI Scul rooms must

		D et al.	Tomography for	this paper that in	be thoroughly
			Detection of	epidemic areas, chest	washed, and the air
			Coronavirus Disease	CT can be used as a	must be
			2019 (COVID-19): Don't	foremost method to	recirculated
			Rush the Science"	detect COVID-19.	because COVID-19
					infection may be
					transmitted to other
					patients or
					personnel in
					imaging
					departments even
					though all
					procedures are
					followed.
15.	2020	Varalak	"Detection of COVID-19	VGG16 takes less	For detection of this
		shmi	using CXR and CT	time because it is just	virus infection,
		Perumal	images using Transfer	16 layers deep, The	analysis of unusual
		et al.	Learning and Haralick	VGG16	features in
			features"	model recognizes the	the images is
				data from COVID-19	needed. More
				with	data can be
				a misclassification rate	assimilated for
				of 0.012.	better outcomes in
					future work.
16	2020	Constan	"CT and Coronavirus	High quality CT	These risks include
		tine A et	Disease (COVID-19): A	evidence will ideally	overuse of
		al.	Critical Review	emerge as the medical	hospital resources,
			of the Literature to Date"	community gains	that is limited but is
				expertise in the care	needed to conduct
				of patients with	CT studies safely,
				COVID-19 and will	in imaging
				promote a more	departments, thereb
				extended role for CT.	y potentially
					raising the risk of
					disease transmission
					and exposure.
17	2020	Karen	<i>"VERY DEEP</i>	It was shown that	The models are very
		Simony	CONVOLUTIONAL	state-of-the-art	large, 550 MB +
		an et al.	NETWORKS FOR	efficiency can be	weight size, and
			LARGESCALE IMAGE	achieved using a	they have so many
			RECOGNITION"	traditional ConvNet	weight parameters.
				architecture with	Which also means
				significantly improved	long periods of
				depth on the	interence.
				ImageNet challenge	
10	0000		((D)	dataset.	
18.	2020	Aditya	"Diagnostic accuracy of	CT scanning has	This has to be
		Borakati	X ray versus CT in	demonstrated	balanced, where
		et al.	COVID 19: a propensity-	excellent sensitivity	capability allows,

			matched database study"	and should strongly	against the risk of
				be considered in the	excess CT
				initial evaluation for	radiation.
				COVID 19, during the	
				pandemic.	
<i>19</i> .	2020	Wang S	"A fully automatic deep	The DL method	There are other end
		et al.	learning system for	estimates its	of-stage prognostic
			COVID-19	prognostic condition if	cases, such as death
			diagnostic and	the patient is	or admission to the
			prognostic analysis"	diagnosed as COVID-	icu, and this
				19, which can be used	research did not
				to classify potential	recognize them. On
				high-risk patients who	the other hand, this
				need special care and	analysis included
				urgent medical	CT images various
				services.	thicknesses of
					slices.
<i>20</i> .	2020	Li L et	"Using artificial	Study has successfully	In this study, we
		al.	intelligence to detect	applied deep learning	were unable to
			COVID-19 and	techniques for	choose other viral
			community acquired	pediatric chest	pneumonias for
			pneumonia based on	radiographs to	comparison due to
			pulmonary CT:	distinguish bacterial	the lack of
			Evaluation of the	and viral pediatric-	laboratory
			diagnostic accuracy"	chest pneumonia	confirmation of
				radiographs.	origin for each of
					these cases.

Table 1: Different methods for Corona Virus Detection.

III. CONCLUSION

Our project aims to efficiently teach a machine learning model that is capable of predicting Covid-19 cases, with the percentage probability that it is indeed a Covid-19 infection. The training dataset of Covid-19 cases is used to make the algorithm learn which HRCT images are Covid-19 and which are not. Subsequently, the test data set is used to determine the true efficiency of the machine learning model in predicting Covid-19. We aim for high efficiency and consistent performance across various Covid-19 and non Covid-19 cases, and a quick analysis time.

REFERENCES

Xie X, Zhong Z, Zhao W, Zheng C, Liu J,
 Wang F: "Chest CT for typical coronavirus disease 2019 (COVID-19)

pneumonia: Relationship to negative RT-PCR testing" in February 12, 2020. Available:

https://pubs.rsna.org/doi/10.1148/radiol.20 20200343

- Fang Y, Zhang H, Xie J, Lin M, Ying L, Pang P, Ji W: "Sensitivity of chest CT for COVID-19: comparison to RT-PCR" in February 19, 2020. Available: https://pubs.rsna.org/doi/full/10.1148/ radiol.2020200432
- [3] Ai T, Yang Z, Hou H, Zhan C, Chen C, Lv W, Tao Q, Sun Z and Xia L: "Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in China: A Report of 1014 cases" in February 26, 2020. . Available:https://pubmed.ncbi.nlm.nih.gov /32101510/

Adam Bernheim, Xueyan Mei, Minggian [4] Huang, Yang Yang, Zahi A. Fayad , Ning Zhang, Kaiyue Diao, Bin Lin, Xiqi Zhu, Kunwei Li, Shaolin Li, Hong Shan, Adam Michael Chung "Chest CT Jacobi. Findings in Coronavirus Disease-19 (COVID-19): Relationship to Duration of February Infection" in 2020. Available:https://www.researchgate.net/ publication/339393396 Chest CT Findin gs_in_ Coronavirus_Disease19_COVID 19_

Relationship_to_Duration_of_ Infection [5] Moutaz Alazab, Albara Awajan,

- Abdelwadood Meseleh, Ajith Abraham, Vansh Jatana, and Salah Alhyari "COVID-19 Prediction and Detection Using Deep Learning" under Project: Supply chain management integration on May 2020. pg 168-181. Available: https://www.researchgate.net/publication/3 41980921_COVID19_Prediction_a nd_Detection_Using_Deep_Learning
- [6] (May 2020) Meng Lv, Mengshu Wang, Nan Yang, Xufei Lou, Wei Li, Xin Chen, Yunlan Liu, Mengjuan Ren, Xianzhou Zhang, Ling Wang, Yanfang Ma, Junqiang Lei, Toshio Fukuoa, Hyeong Sik ahn, Myeong Soo Lee, Zhengxiu Luo, Yalong Chen, Enmei Liu, Jinhui Tian, Xiaohui Wang "Chest computed tomography for the diagnosis of patients with coronavirus disease 2019 (COVID-19): a rapid review and meta-analysis" PMID: 32566559 Available:

https://www.ncbi.nlm.nih.gov/pmc/articles /PMC7290647/

Zhang K, Liu X, Shen J, Sang Y, Wu X, [7] Zha Y, Liang W, Wang C, Wang K "Clinically applicable AI system for diagnosis, quantitative accurate measurements, and prognosis of COVIDusing 19 pneumonia computed tomography" on May 2020. PMID: 32416069 PMCID: PMC7196900 Available:https://pubmed.ncbi.nlm.nih.gov/32416069/

- [8] "Added value of chest computed tomography in suspected COVID-19: an analysis of 239 patients" by Daniel A. Korevaar, Ruud S.Kotte, Lock P.Smits, Joost G.van den Aardweg, Peter I Bonta, Janke Schinkel, Rene M. Vigeoveno, Inge A.H.van den Berk, Maeke J.Scheerder, Bregtje A.Lemekes, Abraham Goorhuis, Ludo F.M. Beenen, Jouke T Aesema on June 24, 2020. European Respiratory 56: 2001377; Journal 2020 DOI: 10.1183/13993003.01377-2020 Available: https://erj.ersjournals.com/ content/56/2/2001377
- [9] Molly D Wong, Theresa Thai, Yuhua Li, Hong Liu "The role of chest computed tomography in the management of COVID-19: A review of results and recommendations" on June 26 ,2020. Available:https://journals.sagepub.com/doi /full/10.1177/1535370220938315
- [10] Hai-Tao Zhang, Jin song Zhang, Hai-hua Zhang, Yan-dong Nan, Ying Zao, En-qing Fu, Yong hong Xie, Wei liu, Wang ping Li, Hong jun Zhang, Hua Jiang, Chun mei Li, Yan yan Li, Ruin a Ma, Shao kang Dang, Bo bo Gau, Xi jing Zhang & Tao Zhang "Automated detection and quantification of COVID-19 pneumonia: CT imaging analysis by a deep learningbased software" published on July 14, 2020. Available: https://link.springer.com/article/10.1007/ s00259-020-04953-1
- [11] Muhammad E. H. Choudhry, Tawsifur Rahman, Amith Khandakar, Rashid Mazhar, Muhammad Abdul Khadir, Zaid bin Mahbub, Khandakar Reajul Islam, Muhammad Salman Khan, Atif Iqbal, Nasser AL Emadi, Mamun Bin Ibne Riaz and Mahammad Tariqul Islam "Can AI Help in Screening Viral and COVID-19 Pneumonia?" published on July 20, 2020.

Available:https://ieeexplore.ieee.org/stamp /stamp.jsp?arnumber=9144185

- [12] Elie A. Akl, Ivana Blazic, sally Yaccoub, Guy Frija, Roger chou, John Adabie Appaih, Mansoor Fatehi, Nicola FLor, Eveline Hitti, Hussain Jafri, Zheng Yu Jin, Hans Ulrich Kauczar, Michaek kawooya, Ella Annabelle Kazerooni, Jane P. Ko, Rami Mahfouz, Valdair Mughlia, Rose NyabandMarcelo Sanchez, Priya B. Shete, Marina ulla, Chaunseng Zheng, Emilie Van Deventer and Maria Del Rosario Perez "Use of Chest Imaging in the Diagnosis and Management of COVID 19: A WHO Rapid Advice Guide" published 30. 2020. on Julv Available: https://pubs.rsna.org/doi/10.1148/radiol.20 20203173
- [13] (July 2020) Hanan Farhat, George E. Sakr "Deep and Rima Kilany learning applications pulmonary medical in imaging: recent updates and insights on COVID-19" 32834523 PMID: Available:https://www.ncbi.nlm.nih.gov/p mc/articles/PMC7386599/
- [14] (July 2020) Michael D.Hope, Dr. Constantine A Rapatis, Dr Travis S. Henry "Chest Computed Tomography for Detection of Coronavirus Disease 2019 (COVID-19): Don't Rush the Science" Available:https://www.acpjournals.org/doi /10.7326/M20-1382
- [15] Varalakshmi Perumal, Vasumathi Narayanan, Sakthi Jaya Sundar Rajasekar
 "Detection of COVID-19 using CXR and CT images using Transfer Learning and Haralick features" on 12 August 2020. Available: Detection of COVID-19 using CXR and CT images using Transfer ... (springer.com)
- [16] (October 2020) Constantine A.Raptis,
 Mark M. Hameer, Ryan G.Short, Amar Shah, Sanjeev Bhalla, Andrew J. Beirhals,
 peter D.Filev, Michael D. Hope, Jean Juedy, Seth J. Kligerman and Travis

S.Henry "CT and Coronavirus Disease (COVID-19): A Critical Review of the Literature to Date" Available:https://www.ajronline.org/doi/fu ll/10.2214/AJR.20.23202

[17] "VERY DEEP CONVOLUTIONAL **NETWORKS** FOR LARGE **SCALE RECOGNITION**" IMAGE by Karen Simonyan and Andrew Zisserman. Available:

https://arxiv.org/pdf/1409.1556.pdf

- [18] "Diagnostic accuracy of X-ray versus CT in COVID-19: a propensity matched database study" by Aditya Borakati, Adrian Perera, Tara Sood, and James Johnson. Available: https://bmjopen.bmj.com/content/10/11/e0 42946
- [19] Wang S, Zha Y, Li W, Wu Q, Li X, Niu M, Wang M, Qiu X, Li H, Yu H: A fully automatic deep learning system for COVID-19 diagnostic and prognostic analysis. Eur Respir J. Available: https://erj.ersjournals.com/content/early/20 20/05/19/13993 003.00775-2020.abstract
- [20] Li L, Qin L, Xu Z, Yin Y, Wang X, Kong B, Bai J, Lu Y, Fang Z, Song Q : Using artificial intelligence to detect COVID-19 and community-acquired pneumonia based on pulmonary CT: Evaluation of the diagnostic accuracy. Available: https://pubs.rsna.org/doi/10.1148/radiol. 2020200905