# **Content Analysis of Science Textbooks on the Misconceptions of Central Dogma of Molecular Biology**

Ernil D. Sumayao<sup>1\*</sup>, Alona Ardines<sup>2</sup>, Jennifer Mirasol<sup>3</sup>, Joysyl Silvosa<sup>4</sup>, Jay Picardal<sup>5</sup>

<sup>1</sup>Biliran Province State University, Naval, Biliran Philippines

<sup>2</sup> Department of Science and Technology, Cebu City, Philippines

<sup>4</sup> Department of Education, Division of Surigao City, Surigao, Philippines

<sup>5</sup>Cebu Normal University, Cebu City, Philippines

\*strikinglight23@gmail.com

### ABSTRACT

The study aimed to examine the representations of the Central Dogma concepts in Science textbooks and analyse the potential contributions to students' misconceptions about the concept. The convergent parallel design was employed and utilized purposive sampling to determine the study participants. Science textbooks were also collected and analysed using document analysis, while the free word association test was employed to determine the teachers' perception of the concepts related to Central Dogma. Based on the findings, the study showed that the features of the textbooks like definition, figures, analogy, and assessment influence the learning of the learners, and even science teachers have misconceptions on the four concepts, namely: duplication, transcription, translation, and protein that related to the central dogma.

### Keywords

Central Dogma, Science Education, Science Textbooks, Word Association Test, Science Teachers, Teaching Science

### Introduction

Central Dogma is one the important topics and many students do not appreciate the significance of the central dogma (Khodor, Halme, & Walker, 2004). It was also pointed out that the high school curricula do not provide adequate scaffolding for students to deeply learn central dogma concepts (Lewis, Leach, & Wood-Robinson, 2000; Shaw, Van Horne, Zhang, & Boughman, 2008). Studies also show that various problems have met in teaching central dogma, like the explanation of canonical model of DNA to RNA to protein (Wright & Fisk, 2014), difficulty of the topics ( (Lewis & Wood-Robinson, 2000 ), concepts are at molecular level ( (Kozma & Russell, 2005 ), vagueness and imprecise language ( (Rector, Nehm , & Pearl, 2013), and poor in understanding the concepts ( (Chattopadhyay, 2005 ). Therefore, teaching the central dogma and its concepts posed a great challenge to the science teacher.

However, teachers applied different teaching strategies and approaches to teaching the central dogma concepts to the students. Some of these were the application of metacognitive inquiry activities ( (Chang, Lee, & Wen, 2020), contextualization ( (Picardal & Pano, 2018), analogy role-play activity ( (Takemura & Kurabayashi , 2014), physical models ( (Newman, Stefkovich , Clasen , Franzen , & Wright , 2018), group work paper model ( (Altiparmak & Nakiboglu Tezer , 2009), and epigenetics (Esser-Drits, Malone , Barber , & Stark , 2014). These strategies and approaches give positive results to the students and teachers during the teaching-learning process.

Word association, also known as associative experiment ( (Kostova & Radoynovska , 2010 ) is a test,

consisting of a list of words, administered to the respondent, who has to answer to each word by writing as many words that is related to the key concept that come to his or her mind. The concept (intellectual) map is a "nonlinear diagrammatic representation of meaningful relationships between concepts" ( (Giuliodori, Lujan , & Dicarlo , 2007 ), a mental model, a schematic representation, which is a hierarchical structure from interconnected words, ideas, problems, solutions, arranged around a key word in radial circles (Buzan & Buzan, 1996).

One of the learning materials that are commonly utilized by the teachers and students in the textbooks. Textbooks have a positive impact to the students because it improves the student's understanding on science concepts ( (Kartikasari, Roemintoyo, & Yamtinah, 2018), availability of content, organization, setting out of learning task ( (Schmidt, McKnight, & Raizen, 2002), and the congruity of content and aim ( (Chiappetta, Fillman , & Sethna , 1991 ). But textbooks have also glitches like other learning materials. Various studies pointed out that textbooks are merely focusing on the descriptions of facts (Smolkin, McTigue, & Yeh, 2011), produced by the non-experts and generally for commercial purposes ( (Gokce, 2009 ), and misconceptions ( (King, 2010 ). Thus, for the textbook to function as a useful instructional guide, its content must not only be suited to the interest and abilities of learner but rather, it must be acceptable in light of the current curriculum content standard point-of-view and avoid misconceptions.

<sup>&</sup>lt;sup>3</sup> Department of Education, Division of Lapu-lapu City, Cebu, Philippines

### **Objectives of the Study**

The study aimed to examine the representations of the Central Dogma concepts in Science textbooks and analysing them to reveal their potential contributions to students' misconceptions about the concept.

1. How are the concepts of Central Dogma presented in secondary high school Science textbooks in terms of: (a) definitions, (b) figures, and (c) analogies

2. How are the Central Dogma concepts present in local and foreign textbooks in terms of assessment activities?

3. How do these concepts presented in textbooks perceived by the teachers using word association test?

4. Is the demographic profile of the participants related to their perception of concepts?

### Methods

The study utilized convergent parallel design to gain an in-depth understanding of the study. This method was used to gather qualitative data and quantitative elements in the same phase of the research process, weighs the method equally, but analysed the two elements independently, and interpreted the results together (Creswell & Plano, 2011). Textbooks were grouped into two as local and foreign categories. Local textbooks were textbooks written by local authors and published within the country. While foreign textbooks were textbooks written by foreign authors and published outside of the Philippines. All textbooks published and copyrighted from 2000-2020 and utilized by the science teachers during the teaching-learning process were part of the study. On the other hand, in determining the science teachers, purposive sampling were employed. The teacher must be a science teacher in junior or senior high school, utilized science textbooks in teaching or as reference and taught biological science subjects.

### **Data Analysis**

In analysing the data, document analysis was used in the textbooks and free word association test for the teachers. The researchers compare the textbooks in terms of how it defines, show figures, and use analogy the four concept, namely; replication, transcription, translation and protein and the format of its assessment. Similarities and differences were noted and discuss and supported were noted and discuss and supported with related literature to support the claim of the study. While in free word association test, the teachers were given piece of paper and have a concept word written. The Science teachers handling Biology were presented with four key concepts in Central Dogma of Molecular Biology. These four key concepts, namely: replication, transcription, translation and protein were validated by science teachers that related to the main topic Central Dogma. Teachers were requested to write down the word/s each key concept evoked within 30 seconds. Their replies were matched with the key concepts and converted into frequency table and concept maps that represent the cognitive structures of the Science-Teachers handling Biology. The first past is constructed by recording the key concepts and the answers. In the concept map, all

the parts were constructed by determining all the answers given by the prospective teachers for the key concepts.

After an investigation of these four key concepts of the Central Dogma of Molecular Biology and consultation with four Doctoral students, the researchers decided on the concepts of replication, transcription, translation and protein as potential sources of misconception. Prior to administration, the researchers provided the necessary instructions, explanations and examples to the participants. Consulting relevant past studies, the researchers chose to allocate a 30-second period for each key concept (Bahar and Ozatlı, 2003; Cardak, 2009, Ercan, Taşdere and Ercan, 2010). The Science teachers handling Biology were requested to write the words that the given key concept evoked on the page allocated for the respective concept in order of importance within 30 seconds. The detailed frequency table was constructed by the number of times the replies for the key concepts were iterated. The Detailed Frequency Table was used in the construction of the concepts maps. In the Cutoff Point Method, the total numbers of words given in reply to the key concepts are grouped by specific intervals and grouping intervals are used as cutoff points. The demo-graphic profile of the science teacher were also gathered to correlate it to their perceptions to the concepts of central dogma. Chi-square was used to establish the relationship of the variables.

### **Results and Discussion**

The concepts of central dogma presented in secondary high school science textbooks varies in different ways.

Table 1 presents the manner how the local textbooks define the four concepts related to the Central Dogma.

| Tuble II Local Textbooks Commed by Belence Teacherb | Table 1. Local Text | books Utilized b | by Science Teachers |
|-----------------------------------------------------|---------------------|------------------|---------------------|
|-----------------------------------------------------|---------------------|------------------|---------------------|

| Content       | Definition                                   | Source                  |
|---------------|----------------------------------------------|-------------------------|
| Replication   | A process of                                 | Acosta, et al.,         |
|               | making two                                   | (2015). Science 10      |
|               | identical copies of                          | Learner's Material      |
|               | DNA.                                         | & Teacher's Guide       |
|               |                                              | 1 <sup>st</sup> Edition |
|               | DNA replication is                           | Evangelista, Luisito    |
|               | the careful                                  | T. (2018). General      |
|               | reproduction of                              | Biology 2 for           |
|               | DNA molecules in                             | Senior High School      |
|               | a cell.                                      |                         |
| Transcription | The process in                               | Acosta, et al.,         |
|               | which the sequence                           | (2015) Science 10       |
|               | of nucleotides in                            | Learner's Material      |
|               | DNA directs the & Teacher's Guid             |                         |
|               | order of nucleotides 1 <sup>st</sup> Edition |                         |
|               | in messenger RNA.                            |                         |
|               | Transcription is the                         | Evangelista, Luisito    |
|               | first of the three                           | T. (2018). General      |
|               | steps in protein                             | Biology 2 for           |
|               | synthesis.                                   | Senior High School      |
|               | Transcription                                | Capco & Yang            |
|               | process produces                             | (2010). You and the     |
|               | mRNA from DNA.                               | Natural World-          |

PSYCHOLOGY AND EDUCATION (2021) ISSN: 0033-3077 Volume: 58(4): Pages: 478 - 486 Article Received: 08th October, 2020; Article Revised: 15th February, 2021; Article Accepted: 20th March, 2021

|             |                       | Biology 3 <sup>rd</sup> Edition |               | molecule. DNA             |                 |
|-------------|-----------------------|---------------------------------|---------------|---------------------------|-----------------|
| Translation | The process of        | Acosta, et al.,                 |               | replication is said to be |                 |
|             | converting the        | (2015). Science 10              |               | semiconservative.         |                 |
|             | information in        | Learner's Material              |               | The replication of a      | Breece, et al.  |
|             | messenger RNA         | & Teacher's Guide               |               | chromosome begins at      | (2014).         |
|             | into a sequence of    | 1 <sup>st</sup> Edition         |               | particular sites called   | Campbell        |
|             | amino acids that      |                                 |               | origins of replication    | Biology 10th    |
|             | make a protein.       |                                 |               | short stretches of DNA    | Edition         |
|             | The translation of    | Evangelist, Luisito             |               | having a specific         |                 |
|             | mRNA codons to        | T. (2018). General              |               | sequence of nucleotides.  |                 |
|             | amino acids forms     | Biology 2 for                   |               | DNA replication begins    | Starr, Evens, & |
|             | polypeptides.         | Senior High School              |               | with one DNA double       | Starr (2018).   |
|             | Translation is the    | Capco & Yang                    |               | helix and ends with two   | Biology. Today  |
|             | process of            | (2010). You and the             |               | DNA double helices.       | and Tomorrow    |
|             | assembling protein    | Natural World-                  |               |                           | Biology for     |
|             | molecules from the    | Biology 3 <sup>rd</sup> Edition |               |                           | Non-Science     |
|             | information           | 07                              |               |                           | Major           |
|             | encoded in the        |                                 | Transcription | The first step of the     | Weaver,         |
|             | mRNA.                 |                                 | -             | Central Dogma is the      | Robert F.       |
| Protein     | Proteins such as      | Acosta, et al.,                 |               | transfer of information   | (2008).         |
|             | enzymes mostly        | (2015). Science 10              |               | from DNA to RNA,          | Molecular       |
|             | amino acids chained   | Learner's Material              |               | which occurs when an      | Biology, Fifth  |
|             | together in a certain | & Teacher's Guide               |               | mRNA copy of the gene     | Edition,        |
|             | order.                | 1 <sup>st</sup> Edition         |               | is produced. Like all     | McGraw Hill,    |
|             | Protein is the end    | Evangelista, Luisito            |               | classes of RNA, mRNA      | New York, NY.   |
|             | product of DNA        | T. (2018). General              |               | is formed on a DNA        |                 |
|             | translation and is    | Biology 2 for                   |               | template. Because the     |                 |
|             | the most abundant     | Senior High School              |               | DNA sequence in the       |                 |
|             | molecule in a living  | 0                               |               | gene is transcribed into  |                 |
|             | organism.             |                                 |               | an RNA sequence, this     |                 |
|             | Protein is a          | Capco & Yang                    |               | stage is called           |                 |
|             | structure of amino    | (2010). You and the             |               | transcription.            |                 |
|             | acid from short       | Natural World-                  |               | It involves numerous      | Miller &        |
|             | chains of peptides.   | Biology 3 <sup>rd</sup> Edition |               | enzymes that unwind a     | Harley (2016)   |
|             | F.F.                  |                                 |               | region of a DNA           | Zoology 10th    |
|             |                       |                                 |               | molecule, initiate and    | Edition,        |
| On t        | he other hand Table   | ? presents how the              |               | end mRNA synthesis,       | McGraw Hill     |

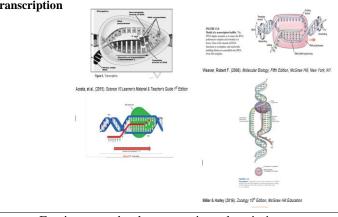
On the other hand, Table 2 presents how the foreign textbooks define the four concepts.

Table 2. Foreign Textbooks Utilized by Science Teachers

| Content     | Definition               | Source                   |
|-------------|--------------------------|--------------------------|
| Replication | Several principles apply | Weaver,                  |
|             | to all (or most) DNA     | Robert F.                |
|             | replication: (1) Double- | (2008).                  |
|             | stranded DNA replicates  | Molecular                |
|             | in a semi-conservative   | Biology, Fifth           |
|             | manner. (2) DNA          | Edition,                 |
|             | replication in E. coli   | McGraw Hill,             |
|             | (and in other organisms) | New York, NY.            |
|             | is at least semi-        |                          |
|             | discontinuous.           |                          |
|             | Each DNA strand is a     | Miller &                 |
|             | template for a new       | Harley (2016).           |
|             | strand. Each new DNA     | Zoology 10 <sup>th</sup> |
|             | molecule contains one    | Edition,                 |
|             | strand from the old      | McGraw Hill              |
|             | DNA molecule and one     | Education                |
|             | newly synthesized        |                          |
|             | strand. Because half of  |                          |
|             | the old molecule is      |                          |
|             | conserved in the new     |                          |

|             | <b>A</b>                    |                          |
|-------------|-----------------------------|--------------------------|
|             | It involves numerous        | Miller &                 |
|             | enzymes that unwind a       | Harley (2016).           |
|             | region of a DNA             | Zoology 10 <sup>th</sup> |
|             | molecule, initiate and      | Edition,                 |
|             | end mRNA synthesis,         | McGraw Hill              |
|             | and modify the mRNA         | Education                |
|             | after transcription is      |                          |
|             | complete.                   |                          |
|             | <b>Transcription</b> is the | Breece, et al.,          |
|             | synthesis of RNA using      | (2014).                  |
|             | information in the DNA.     | Campbell                 |
|             |                             | Biology 10 <sup>th</sup> |
|             |                             | Edition                  |
|             | Transcription is a          | Starr, Evers &           |
|             | process in which            | Starr (2018).            |
|             | enzymes use the DNA         | Biology. Today           |
|             | sequence of a gene as a     | and Tomorrow             |
|             | template to assemble a      | Biology for              |
|             | strand of RNA.              | Non-Science              |
|             | Transcription makes a       | Major                    |
|             | copy of a gene.             |                          |
| Translation | The second step of the      | Weaver,                  |
|             | Central Dogma is the        | Robert F.                |
|             | transfer of information     | (2008).                  |
|             | from RNA to protein,        | Molecular                |
|             | which occurs when the       | Biology, Fifth           |
|             | information contained in    | Edition,                 |
|             | the mRNA transcript is      | McGraw Hill,             |
|             | used to direct the          | New York, NY             |
|             | sequence of amino acids     |                          |
|             |                             |                          |
|             |                             | 100                      |

|         | during the synthesis of<br>polypeptides by<br>ribosomes. This process<br>is called <b>translation</b><br>because the nucleotide<br>sequence of the mRNA<br>transcript is translated<br>into an amino acid<br>sequence in the<br>polypeptide. |                                                                                                          |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
|         | A protein synthesis at<br>the ribosomes in the<br>cytoplasm, based on the<br>genetic information in<br>the transcribed mRNA.                                                                                                                 | Miller&Harley(2016).Zoology10thEdition,McGrawMcGrawHillEducation                                         |
|         | <b>Translation</b> is the synthesis of RNA using information in the DNA.                                                                                                                                                                     | Breece, et al.,<br>(2014).<br><i>Campbell</i><br><i>Biology</i> 10 <sup>th</sup><br><i>Edition</i>       |
|         | Translation is a process<br>by which a polypeptide<br>chain is assembled from<br>amino acids in the order<br>specified by an mRNA.                                                                                                           | Starr, Evers &<br>Starr (2018).<br>Biology: Today<br>and Tomorrow<br>Biology for<br>Non-Science<br>Major |
| Protein | Produced on the ribosomes on the surface of the rough endoplasmic reticulum.                                                                                                                                                                 | Miller&Harley (2016).ZoologyIothEdition,McGrawHillEducation                                              |
|         | A <b>protein</b> is a<br>biologically functional<br>molecule made up of<br>one or more<br>polypeptide, each folded<br>and coiled into a<br>specific three<br>dimensional structure.                                                          | Breece et al.,<br>(2014).<br>Campbell<br>Biology 10 <sup>th</sup><br>Edition                             |
|         | Organic compound that<br>consists of one or more<br>chain amino acid.                                                                                                                                                                        | Starr, Evers &<br>Starr (2018).<br>Biology: Today<br>and Tomorrow<br>Biology for<br>Non-Science<br>Major |


Foreign textbooks commonly defined science concepts in the extracted definition than local textbooks. Local textbooks define the concepts in a short and brief statement. While the foreign textbook, define the concepts in a more elaborated and sometimes introduce first the steps or situations before the concept. According to Bayda & Sutliff (2020), students should be taught extracted definitions, to help them create concept images that relates definitions to the real world.

While in presenting figures related to the two concepts of Central Dogma of local and foreign textbooks,

Table 3 presents the figures showing the similarities and differences.

## Table 3. Local and Foreign Science Textbooks showing the Figures of the Concepts of Central Dogma

| the Figures of | the Figures of the Concepts of Central Dogina |                  |  |  |  |  |
|----------------|-----------------------------------------------|------------------|--|--|--|--|
| Concept        | Local Textbook                                | Foreign Textbook |  |  |  |  |
| Replication    | <complex-block><image/></complex-block>       |                  |  |  |  |  |
| Transcription  |                                               |                  |  |  |  |  |



Foreign textbooks contain descriptions or explanations about the figure presented than local textbooks. In local textbooks, the label of the figure is present and the name of the picture and label were provided but details were lacking. The foreign textbooks, write the figure and elaborated discussion of the picture or diagram. There were also arrows which shows the direction of the flow or process and details were provided. Mayer & Gallini (1990) posited that illustration or diagrams are effective when both the text and illustrations are "appropriate" for the task. And carefully constructed text illustrations generally enhance learner's performance (Carney & Levin , 2002).

In Table 4, both local and foreign science textbooks used the analogy in discussing the topics of the central dogma. Analogies like car-making and construction working were found in local textbooks. Furthermore, machine, oneroom workshop and book were some analogies found in foreign textbooks. Simanek (2010) stressed out that science students have to be exposed to analogical reasoning to understand the nature and common arguments of science. Curtis and Reigeluth ( (1984) stated also that analogies are generally believed to aid learning of unfamiliar concepts and to improve understanding when they are included in expository science texts.

### Table 4. Analogies commonly found in the ScienceTextbooks Utilized by Science Teachers

| Kind of Science<br>Textbooks | Analogy                                  |  |  |  |  |  |
|------------------------------|------------------------------------------|--|--|--|--|--|
| Local                        | Replication is like car-making.          |  |  |  |  |  |
|                              | Translation is like construction workers |  |  |  |  |  |
|                              | bringing hollow blocks to build a wall.  |  |  |  |  |  |
| Foreign                      | If we were charged with the task of      |  |  |  |  |  |
|                              | designing a DNA-replication machine,     |  |  |  |  |  |
|                              | we might come up with a system.          |  |  |  |  |  |
|                              | Much more is known about this            |  |  |  |  |  |
|                              | "replication machine" works in           |  |  |  |  |  |
|                              | bacteria                                 |  |  |  |  |  |
|                              | The most important differences between   |  |  |  |  |  |
|                              | bacteria and eukaryotes arise from the   |  |  |  |  |  |
|                              | bacteria cell's lack of compartmental    |  |  |  |  |  |
|                              | organization. Like a one-room            |  |  |  |  |  |
|                              | workshop, a bacterial cell ensures a     |  |  |  |  |  |
|                              | streamlined operation by coupling the    |  |  |  |  |  |
|                              | two processes.                           |  |  |  |  |  |
|                              | DNA is like a book an encyclopedia       |  |  |  |  |  |
|                              | that carries instructions for building a |  |  |  |  |  |
|                              | new individual.                          |  |  |  |  |  |

Moreover, in foreign science textbooks. assessments were divided into; review questions, analytical questions, suggested readings (general references and reviews, research articles), synthesis and others. On the other hand, local science textbooks assessment has no subheading or additional parts unlike the foreign textbooks. It was observed by the science educators that when the students learn science topics, there is a need to emphasize deep conceptual understanding rather than factual recalls. And for this reason, textbooks shall incorporate a wide repertoire of content-specific instructional supports that promote understanding among students from diverse backgrounds, interests, and abilities (Koppal & Caldwell , 2017).

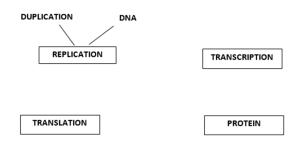

Table 5 presents the differences of the two textbooks in terms of its assessment.

Table5.Local and ForeignScienceTextbookAssessment Activities

| Kind of  | Assessment Activities |
|----------|-----------------------|
| Science  |                       |
| Textbook |                       |
| Local    | Set Out               |



Further, in the free word association test conducted to the secondary Science teachers handling Biology associated replication with duplication and DNA (Figure 1). Teacher were not able to give associated words to transcription, translation and protein in the cut-off point of equal to or greater than 5.



### Figure 1. Concept Map with a Cut-off Point of equal 6 over 6

In the cut-off interval of 3-5 (Figure 2), the secondary Science teachers handling Biology associated replication with copy. Among replies for the key concept replication, DNA stands out. DNA is a molecule composed of two polynucleotide chains that coil around each other to form a double helix. DNA was also associated with transcription and translation in the cut-off interval of 3-5. The teachers associated the mRNA to transcription and translation. In transcription DNA is coped into RNA. The messenger RNA (mRNA) is a single stranded RNA molecule that is complementary to one of the DNA strands of a gene. Protein is associated with translation as its product in the protein synthesis. The associated word for protein muscle growth, essential foods and more which are important in the body. In the Figure 2, coloured green text and shape are considered as misconceptions. RNA is associated with the key concept of replication and copy is

associated with transcription; it is an existence of misconception is the central dogma of biology.

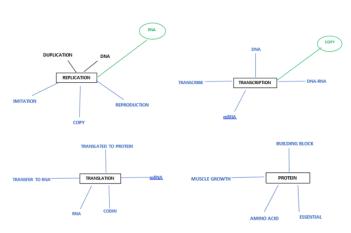



Figure 2. Concept Map with a Cut-off Interval of 3-5

In the cut-off interval of 1-2, the red line and red words (Figure 3) are considered the least associated words in the key concepts. Figure 3 shows an increase in the number of associations for the concepts of replication, transcription, translation and protein. However, replies for the key concepts of DNA in translation is a misconception. The highest rank of associated word for replication is duplication, for transcription is DNA, for translation are transfer of RNA and coding and protein are building blocks, muscle growth, amino acid and essential food. In addition, RNA and DNA are associated with the key concept of protein and DNA is associated with translation; it is also a misconception in the central dogma of Biology mRNA and rRNA are used in translation.

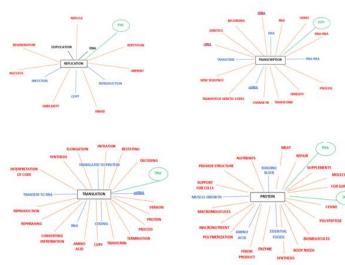
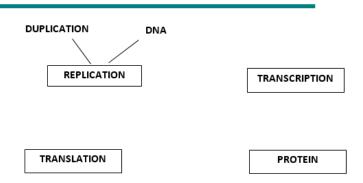




Figure 3. Concept Map with a Cut-off Interval of 1-2



#### Figure 6. Concept Map with a Cut-off Point of equal of 6 over 6

Table 6 shows the words associated to the key concepts such as replication, transcription, translation and protein. The highest rank of associated word for replication is duplication, for transcription is DNA, for translation are transfer of RNA and coding and protein are building block, muscle growth, amino acid and essential food. While the Table 7 shows that words that are considered as NOT ACCEPTABLE or misconception. RNA is not associated with replication since DNA is used in this process. The same for DNA which is not used in translation but the RNA.

| Table 6. | Distribution | of | acceptable | words | to | the | key |
|----------|--------------|----|------------|-------|----|-----|-----|
| concepts |              |    |            |       |    |     |     |

| Concepts      | Associated Words          | f  |
|---------------|---------------------------|----|
| Replication   | Duplication               | 10 |
|               | DNA                       | 6  |
|               | COPY                      | 5  |
|               | Imitation                 | 3  |
|               | Reproduction              | 3  |
|               | Regeneration              | 1  |
|               | Increasing number         | 1  |
|               | Similarity                | 1  |
|               | Imprint                   | 1  |
|               | Repetition                | 1  |
|               | Image                     | 1  |
|               | Replica                   | 1  |
| Transcription | DNA                       | 5  |
| _             | Transcribe                | 3  |
|               | mRNA                      | 3  |
|               | DNA-RNA                   | 3  |
|               | Process                   | 2  |
|               | RNA                       | 2  |
|               | Gene sequence             | 2  |
|               | Transfer of genetic codes | 2  |
|               | Reading of codes          | 2  |
|               | Genes                     | 1  |
|               | Heredity                  | 1  |
|               | Genetics                  | 1  |
|               | Change in                 | 1  |
|               | Transform                 | 1  |
|               | Recording                 | 1  |
|               | Сору                      | 1  |
| Translation   | Transfer of RNA           | 4  |
|               | Coding                    | 4  |
|               | Translated to protein     | 3  |
|               | RNA                       | 3  |

### PSYCHOLOGY AND EDUCATION (2021) ISSN: 0033-3077 Volume: 58(4): Pages: 478 - 486 Article Received: 08th October, 2020; Article Revised: 15th February, 2021; Article Accepted: 20th March, 2021

|         | mRNA                   | 3 |
|---------|------------------------|---|
|         | Сору                   | 2 |
|         | Reproduction           | 2 |
|         | Protein                | 2 |
|         | Converting information | 2 |
|         | Restating              | 2 |
|         | Amino acid             | 2 |
|         | Interpretation code    | 2 |
|         | Process                | 1 |
|         | Transcribe             | 1 |
|         | Version                | 1 |
|         | Termination            | 1 |
|         | Initiation             | 1 |
|         | Elongation             | 1 |
|         | Synthesis              | 1 |
|         | Rephrasing             | 1 |
|         | Decoding               | 1 |
| Protein | Building block         | 3 |
|         | Muscle growth          | 3 |
|         | Amino acid             | 3 |
|         | Essential food         | 3 |
|         | Nutrients              | 2 |
|         | Provide structure      | 2 |
|         | Support for cells      | 2 |
|         | Macronutrient          | 2 |
|         | Body need              | 1 |
|         | For survival           | 1 |
|         | Finish product         | 1 |
|         | Meat                   | 1 |
|         | Synthesise             | 1 |
|         | Polymerization         | 1 |
|         | Molecule               | 1 |
|         | Supplements            | 1 |
|         | Repair                 | 1 |
|         | Lysine                 | 1 |
|         | Polypeptide            | 1 |
|         | Biomolecules           | 1 |
|         | Enzyme                 | 1 |
|         | Macromolecule          | 1 |
|         | Albumin                | 1 |
|         |                        |   |

| Table 7. Distribution of not acceptable words to the key |
|----------------------------------------------------------|
| concents                                                 |

| Concept       | Associated Words   | f |
|---------------|--------------------|---|
| Replication   | RNA                | 2 |
|               | Meiosis            | 1 |
|               | Mitosis            | 1 |
|               | Mutation           | 1 |
|               | Protein            | 1 |
|               | Nucleus            | 1 |
| Transcription | Сору               | 1 |
|               | rRNA               | 1 |
|               | tRNA               | 1 |
|               | Naming amino acids | 1 |
|               | Inscription        | 1 |
|               | Evidence           | 1 |
|               | Archive            | 1 |
|               | Chronicle          | 1 |
|               | Clone              | 1 |

| Translation | DNA           | 5 |
|-------------|---------------|---|
|             | Conduct       | 1 |
|             | Reading       | 1 |
|             | Adaptation    | 1 |
|             | Elucidation   | 1 |
| Protein     | Energy-giving | 2 |
|             | RNA           | 1 |
|             | DNA           | 1 |
|             | Nucleic acid  | 1 |

#### Table 8. Demographic Profile and Concept Perception of Science Teachers

| Science Teachers |          |    |       |                |  |
|------------------|----------|----|-------|----------------|--|
| Concept/         | Total    | Df | Table | Decision       |  |
| Demographic      | Computed |    | value |                |  |
| Profile          | Value    |    |       |                |  |
| Replication      |          | -  | I     |                |  |
| Age/ Perception  | 2.87     | 3  | 7.82  | Accept         |  |
|                  |          |    |       | null           |  |
| Number of year   | 6.67     | 3  | 7.82  | Accept         |  |
| teaching/        |          |    |       | null           |  |
| Perception       |          |    |       |                |  |
| Number of year   | 4.76     | 3  | 7.82  | Accept         |  |
| teaching         |          |    |       | null           |  |
| Biology/         |          |    |       |                |  |
| Perception       |          |    |       |                |  |
| Undergraduate    | 0.07     | 1  | 3.84  | Accept         |  |
| Major/           | 0.07     | 1  | 5.04  | null           |  |
| Perception       |          |    |       | iiuii          |  |
| Highest          | 4.29     | 2  | 5.99  | Accent         |  |
| U                | 4.27     | 2  | 3.99  | Accept<br>null |  |
| Educational      |          |    |       | null           |  |
| Attainment/      |          |    |       |                |  |
| Perception       |          |    |       |                |  |
| Transcription    |          | 1  | 1     | 1              |  |
| Age/ Perception  | 1.63     | 3  | 7.82  | Accept         |  |
|                  |          |    |       | null           |  |
| Number of year   | 0.79     | 3  | 7.82  | Accept         |  |
| teaching/        |          |    |       | null           |  |
| Perception       |          |    |       |                |  |
| Number of year   | 7.37     | 3  | 7.82  | Accept         |  |
| teaching         |          |    |       | null           |  |
| Biology/         |          |    |       |                |  |
| Perception       |          |    |       |                |  |
| Undergraduate    | 0        | 1  | 3.84  | Accept         |  |
| Major/           | ~        | -  |       | null           |  |
| Perception       |          |    |       |                |  |
| Highest          | 0.49     | 2  | 5.99  | Accept         |  |
| Educational      | 0.42     | 2  | 5.97  | null           |  |
| Attainment/      |          |    |       | iiuii          |  |
|                  |          |    |       |                |  |
| Perception       |          |    |       |                |  |
| Translation      | 2.16     | 2  | 7.02  | A              |  |
| Age/ Perception  | 3.16     | 3  | 7.82  | Accept         |  |
|                  | 0.70     |    | 7.02  | null           |  |
| Number of year   | 0.79     | 3  | 7.82  | Accept         |  |
| teaching/        |          |    |       | null           |  |
| Perception       |          |    |       |                |  |
| Number of year   | 5.45     | 3  | 7.82  | Accept         |  |
| teaching         |          | 1  |       | null           |  |
| teaching         |          |    |       | man            |  |
| Biology/         |          |    |       | nun            |  |
|                  |          |    |       |                |  |

| Major/          |      |   |      | null   |
|-----------------|------|---|------|--------|
| Perception      |      |   |      |        |
| Highest         | 8.47 | 2 | 5.99 | Reject |
| Educational     |      |   |      | null   |
| Attainment/     |      |   |      |        |
| Perception      |      |   |      |        |
| Protein         | •    | • | •    |        |
| Age/ Perception | 0.13 | 3 | 7.82 | Accept |
|                 |      |   |      | null   |
| Number of year  | 1.61 | 3 | 7.82 | Accept |
| teaching/       |      |   |      | null   |
| Perception      |      |   |      |        |
| Number of year  | 2.14 | 3 | 7.82 | Accept |
| teaching        |      |   |      | null   |
| Biology/        |      |   |      |        |
| Perception      |      |   |      |        |
| Undergraduate   | 0.96 | 1 | 3.84 | Accept |
| major/          |      |   |      | null   |
| Perception      |      |   |      |        |
| Highest         | 2.23 | 2 | 5.99 | Accept |
| Educational     |      |   |      | null   |
| Attainment/     |      |   |      |        |
| Perception      |      |   |      |        |

Table 8 shows that null hypothesis should be accepted. This means that the demographic profile of the participants such as age number of years in teaching, number of years teaching biology, major during undergraduate studies and highest educational attainment are not related to their perception on the concepts replication, transcription and protein. This signifies that teachers' concept on replication, transcription, and protein are not affected whether they are old or young, the length or service, their degree program they have graduated with their specialization as well as their highest educational attainment. This only means that teacher's errors, misconceptions and alternative conceptions are attributed on the teachers themselves. Stern and Kampourakis ( (2017 ) stated that teacher's training or seminars cannot completely substantiate on what they have not understood correctly or did not learn during their undergraduate years. However, Smith et al., ( (2008 ) highlighted that there are some common errors among entry-level or newly hired teachers like explaining genetic material as something that codes for polypeptides only. This signifies that teachers' perception on concepts replication, transcription and protein could either be due to their personal attributes or due to being new in the system. With this, it is necessary for the teachers to

### **Limitations and Future Studies**

The study is limited only to the four key words related to the concept Central Dogma. Further, Science textbooks are only limited to the textbooks utilized by the Science teachers as main teaching materials or reference. Further studies are encouraged especially on the important concepts in science and technology subjects and interview from the participants' first-hand experience in teaching the central dogma to validate result from the word association test. solve and address misconceptions or alternative conceptions (Stern & Kampourakis, 2017). This study then recommends that teachers should improve oneself and admit to themselves concepts and topics that they do not fully understand like the central dogma of molecular biology. It is also suggested that school heads or school administrators should administer professional development trainings and seminars especially on the subject areas in which teachers might be lacking in understanding.

In contrast, on the perception of the science teachers to translation, it has shown that there is a significant relationship between highest educational attainment and on their perception on the concept translation for the computed value (8.47) is greater than the table value (5.99). This means that participants' highest educational attainment is related to their perception on the concept translation. This deviates with the other results shown in Table 8 where age, number of years in teaching, number of years teaching Biology and their specialization during undergraduate studies have no significant relationship to their perception on concept translation. This possibly occurs since teachers pursuing graduate studies tend to have more access to knowledge and there are limitless boundaries in comparison to those who have not studied. The limitations done by most teachers or professors in the way they teach a subject lead to lack of understanding (Thorne, Gericke, & Hagberg, 2013 ). Moreover, the length of training undergone by the teachers could also be the factor attributing to their knowledge or perception on certain topics (Stern & Kampourakis, 2017 ). This signifies that with the limitless information and knowledge as well as the length of training could create a difference affecting the perception of concepts. With this, it is suggested that teachers should enroll themselves to graduate studies in order to widen and deepen their understanding on central dogma of molecular biology.

### Conclusion

Based on the results of the study, the researchers concluded that features of the science textbooks like presentation of the diagrams, elaboration on the figures, using analogies, and additional assessment tasks influence the learning of the learner. Moreover, science teachers have misconceptions on the concepts of the topic central dogma which might also taught to the students. And teacher's misconceptions if conveyed to the students will create a barrier that hinders learning.

### Acknowledgement

The researchers would like to express their gratitude to the Science teachers who were willingly participated during the conduct of the study. Further, they also thanks their family, friends, and administrators to the support and motivation to finish the study.

### References

1. Altiparmak, M., & Nakiboglu Tezer, M. (2009). Hands on Group Work Paper Model for Teaching DNA Structure, Central Dogma and Recombinant DNA. US-China Education Review, 19-23.

- 2. Bayda, N. I., & Sutliff, G. (2020). Comparing Extracted and Stipulated Definitions in Algebra 1 Textbooks and Khan Academy. *International Electronic Journal of Mathematics Education*.
- 3. Carney, R. N., & Levin , J. R. (2002). Pictorial Illustrations Still Improve Students' Learning from Text. *Educational Psychology Review*.
- Chang, P. S., Lee, S., & Wen, M. (2020). Metacognitive inquiry activities for instructing the central dogma concept: 'button code' and 'beaded bracelet making'. *Journal of Biological Education*, 47-62.
- Chattopadhyay, A. (2005). Understanding of Genetic Information in Higher Secondary Students in Northeast India and the Implications for Genetics Education. *Cell Biology Education*, 97-104.
- Chiappetta, E. L., Fillman, D. A., & Sethna, G. H. (1991). A method to quantify major themes of scientific literacy in science textbooks. *Journal of Research in Science Teaching*.
- Creswell, J. W., & Plano, C. (2011). Designing and conducting mixed method research. Thousand Oaks, CA : Sage.
- Curtis, R. V., & Reigeluth, C. (1984). The use of analogies in written text. *Instructional Science*, 99-117.
- Esser-Drits, D., Malone, M., Barber, N. C., & Stark, L. A. (2014). Beyond the Central Dogma: Bringing Epigenetics into the Classroom. *The American Biology Teacher*, 365-369.
- Giuliodori, M., Lujan , H., & Dicarlo , S. (2007 ). Peer Instruction Enhanced student performance of qualitative problem-solving questions . *AJP Advances in Physiology Education* , 168-173.
- 11. Gokce, N. (2009). The Problems of Geography Education and Some Suggestions. *Educational Sciences: Theory and Practice*, 757-768.
- Kartikasari, A., Roemintoyo, & Yamtinah, S. (2018). The Effectiveness of Science Textbook Based on Science Technology Society for Elementary School Level. *International Journal of Evaluation and Research in Education*, 127-131.
- 13. Khodor, J., Halme , D., & Walker , G. (2004). A Hierarchical Biology Concept Framework: A Tool for Course Design . *Cell Biology Education* , 111-121.
- 14. King, C. J. (2010). An Analysis of Misconceptions in Science Textbooks: Earth Science in England and Wales . *International Journal of Science Education*, 565-601.
- 15. Koppal, M., & Caldwell , A. (2017 ). Meeting the Challenge of Science Literacy: Project 2016 Efforts to Improve Science Education . *Cell Biology Education*.
- Kostova, Z., & Radoynovska , B. (2010). Motivating Students" Learning Using Word Association Test and Concepts Maps . Bulgarian Journal of Science and Education Policy .

- 17. Kozma, R., & Russell , J. (2005 ). Students Becoming Chemists: Developing Representational Competence . *Visualization in Science Education* , 121-145.
- Lewis, J., & Wood-Robinson, C. (2000). Genes, chromosomes, cell division and inheritance - Do students see any relationship? . *International Journal of Science Education*, 177-195.
- Lewis, J., Leach , J., & Wood-Robinson , C. (2000).
   All in the Genes? Young People's Understanding the Nature of Genes . *Journal Biology Education*, 74-79.
- 20. Mayer, R., & Gallini , J. (1990). When is an Illustration Worth Ten Thousands Words? . *Journal of Educational Psychology*, 715-726.
- 21. Newman, D., Stefkovich, M., Clasen, C., Franzen, M., & Wright, K. (2018). Physical Models can provide Superior Learning Opportunities beyond the Benefits of Active Engagements. *Biochemistry Molecular Biology Education*, 435-444.
- 22. Picardal, M., & Pano , J. (2018). Facilitating Instruction of Central Dogma of Molecular BIology through Contextualization . *Journal of Teacher Education and Research*, 118-132.
- 23. Rector, M. A., Nehm, R. H., & Pearl, D. (2013). Learning the Language of Evolution: Lexical Ambiguity and Word Meaning in Student Explanations . *Res Science Education*, 1107-1133.
- Schmidt, W., McKnight, C. C., & Raizen, S. (2002). A Splintered Vision: An Investigationi of U.S. Science and Mathematics Education. Netherlands: Springer Netherlands.
- 25. Shaw, K., Van Horne , K., Zhang , H., & Boughman , J. (2008 ). Essay contest reveals misconceptions of High School Students in Genetics Content . *Genetics* , 1157-1168.
- 26. Simanek, D. (2010, September 29). *The Dangers* of Analogies. Retrieved from lhup.edu : http://www.lhup.edu/dsimanek/scenario/analogy.ht m
- 27. Smith, M., Wood , W., & Knight , J. (2008). The genetics concept assessment: A new concept inventory for gauging student understanding of genetics. *Cell biology Education*, 422-430.
- 28. Smolkin, L., McTigue , E., & Yeh , Y.-F. (2011). Searching for Explanations in Science Trade Books: What can we learn from Coh-Metrix? *International Journal of Science Education*, 1-18.
- 29. Stern, f., & Kampourakis, K. (2017). Teaching for genetics literacy in the post-genomic era . *Studies in Science Education*.
- 30. Takemura, M., & Kurabayashi , M. (2014). Using analogy role-play activity in an undergraduate biology classroom to show central dogma revision. *Biochemistry Molecular Biology Education*.
- 31. Thorne, K., Gericke , N., & Hagberg , M. (2013). Linguistic challenges in Mendelian Genetics: Teachers' talk in action . *Science Education* , 695-722.
- 32. Wright, K. L., & Fisk, N. (2014). DNA to RNA: What do students think the arrow means? . *CBE Life Sciences Education*, 338-348.