
PSYCHOLOGY AND EDUCATION (2021) 58(2): 9664-9671 ISSN: 00333077

9664

www.psychologyandeducation.net

Research on improving disk throughput in EC-based distributed file system

Dong-Jin Shin1, Jeong-Joon Kim2*

1 Department of Computer Engineering, Anyang University, South Korea
2 Assistant Professor, Department of ICT Convergence Engineering, Anyang University, South Korea

Email: 1djshin@ayum.anyang.ac.kr, 2jjkim@anyang.ac.kr

ABSTRACT

The development of the Fourth Industrial Revolution resulted in an increase in data type and size, and distributed file systems

emerged to store them. Among them, Replication techniques divide the data that you want to store into certain blocks and

replicate the divided blocks to store them distributed across multiple nodes. However, there was a problem with increasing the

disk's capacity to store the replicated blocks. Thus, the Erasure Coding technique emerged, and the EC-based distributed file

system improved the space efficiency issue over the Replication technique because it creates blocks to be stored through encoding

and parity blocks to be used for recovery. However, EC-based distributed file system has caused disk disk write throughput

problems to access a number of disks, causing system performance degradation. Therefore, this paper proposes Buffering and

Combining techniques to improve disk write throughput problems in EC-based distributed file systems.

Keywords

Disk Write Throughput, Big Data, Erasure Coding, HDFS

Article Received: 10 August 2020, Revised: 25 October 2020, Accepted: 18 November 2020

Introduction

In the distributed file system, Hadoop is a

representative method of distributing and storing

data to be stored. Hadoop has two types of

distributed file storage technology and parallel

processing technology, and in this paper, only

distributed file storage technology is mentioned.

Hadoop's distributed file storage is called HDFS

(Hadoop Distributed File System), and it uses a

replication technique that divides the data to be

stored into blocks of a certain size, replicates and

stores it [1].

However, the replication technique requires a

large disk to store copies of divided blocks. In

particular, for companies that store and process

large amounts of data, large costs are incurred in

building and managing because the scale of the

system increases a lot. To solve this space

efficiency problem, the erasure coding technique

(hereinafter referred to as EC) has begun to be

applied to HDFS [2,3].

In the EC technique, original data is striped and

stored into K data cells and M parity cells through

encoding. In the replication technique, blocks are

replicated and stored, but distributed storage

through the encoding of the EC technique is

superior to the replication technique because only

parity cells are added from the existing data cells

[4].

However, by encoding, data cells and parity cells

are distributed stored across multiple data nodes,

resulting in one disk data switching to multiple

smaller Cells. At this point, a number of small

Cell can result in a performance degradation of

the overall system, the larger the volume of K and

M that produces data cells and parity cells, and the

smaller the stripping size, the lower the disk write

throughput performance [5,6].

Starting with the introduction, this paper explores

the replication techniques and EC techniques used

in HDFS, and the performance degradation factors

that occur in EC-based HDFS through two related

studies. Chapter 3 introduces solutions to disk

write throughput problems that arise during

encoding. Chapter 4 compares and analyzes

existing EC-based HDFS and systems that apply

solutions and concludes this paper with the

conclusion of Chapter 5.

Related Works

2.1 Replication based distributed file system

structure

PSYCHOLOGY AND EDUCATION (2021) 58(2): 9664-9671 ISSN: 00333077

9665

www.psychologyandeducation.net

Fig 1. HDFS Basic Structure

Figure 1 illustrates the structure of a replication-

based distributed file system used in Hadoop.

Hadoop has HDFS(Hadoop Distributed File

System) technology that distributes and stores

large amounts of data and Map-Reduce

technology that supports distributed parallelism.

In this paper, we focus only on HDFS.

The process in which the data is stored is first

ordered by the client to store the data in HDFS,

and then the NameNode divides the data entered

by the client into 128 megabytes blocks, which are

designated as default values. When Hadoop is

configured, the value set when dividing the initial

block is 128 megabytes, which can be modified to

the size desired by the user [7].

However, if more data is stored, it is necessary to

increase the space on the physical disk to store the

data. In other words, as the number of replicated

blocks increases, the spatial efficiency of data

storage is reduced.

For example, in Figure 1, we split one data into

three blocks to store it and stored it on multiple

data nodes. However, assuming that one data has

a 100% spatial efficiency, we divide it into blocks

and store two more data through replication,

which eventually requires an additional 200%

spatial efficiency. To improve this, EC techniques

emerged and began to be applied to distributed

file systems.

2.2 Erasure Coding based distributed file

system structure

In a replication-based distributed file system, we

use a simple and convenient storage method using

block replication, but we look at the disadvantages

of increasing data reducing space efficiency and

increasing maintenance costs for the file system

itself. The EC techniques used six of the RAID

levels to improve the existing RAID techniques,

and the structure of the RAID level 6 was shown

in Figure 2.

Fig 2. Hard Disk RAID 6 Level Storage

Structure

Figure 2 shows a RAID 6 level storage structure

that is divided into five disks when files A, B, C,

D, and E are present. Data blocks A1, A2 and A3

that make up file A are stored on different disks

due to RAID 6 level techniques, and two parity

blocks, Ap and Aq, are configured in case of

problems with the data blocks that make up file A.

This parity block is stored on different disks to

avoid overlapping with the data block, and the

original data can be recovered by XOR operations

of the parity block and the data block when the

source data block is in trouble [8].

Fig 3. 4+2 EC Volume Storage Structure

Figure 3 illustrates the 4+2 EC volume storage

structure of a data node storing four data cells and

a data node storing two parity cells. When a client

commands the data to be stored, the data is not

replicated in EC-based HDFS but divided into

data cells through the Split process. We then

encode stored data cells to generate parity cells,

which are used for recovery [8].

In other words, data nodes 1 through 4 represent

data nodes that are stored by fragmenting the

original data they want to store into data cells,

while data nodes 5 and 6 represent data nodes that

store parity blocks generated by encoding data

cells.

PSYCHOLOGY AND EDUCATION (2021) 58(2): 9664-9671 ISSN: 00333077

9666

www.psychologyandeducation.net

Stripping refers to a set of data cells and parity

cells associated with a single encoding operation

as an encoding unit. A block is a file stored on

each data node in a unit of storage. A block group

refers to a set of blocks where a single stripping is

divided and stored, and one file consists of one or

more block groups [9].

2.3 EC-based HDFS System Structure

Degradation Factors

This section provides a detailed look at the disk

in/out problems encountered with EC-based

HDFS when storing data. We first describe the

basic of write process in EC-based HDFS.

Fig 4. Single write process for EC-based HDFS

Figure 4 shows the basic process of EC-based

HDFS and shows the process of importing a file

layout from a client through a name node to

process write through a data node. File layout

refers to file configuration information about the

data that the client wants to store. In addition, the

data node has a Queue Administrator and a

worker to perform encoding services to accept

requested writes and reads, and the worker is

changed to Master and Slave as needed.

An EC-based HDFS client sends a data storage

write request to the name node. The Queue

Administrator on the data node puts the write that

occurs when a client requests it into the Primary

Queue. There are two workers in Figure 4, but

there are many workers in the data node. Many

workers take events from the Primary Queue and

call the appropriate service function during Master

or Slave upon their request, processing them, and

returning the results. Two requests (Cell 1, Cell 2)

have occurred, but only one is processed because

a single write request is dedicated to one worker

for concurrency control.

Fig 5. 4+2 Multiple write process for EC-based HDFS

PSYCHOLOGY AND EDUCATION (2021) 58(2): 9664-9671 ISSN: 00333077

9667

www.psychologyandeducation.net

Different block groups can be processed

simultaneously, as illustrated in Figure 5.

However, as mentioned in Figure 4, requests for

the same block group for concurrency control are

dedicated to one worker, so only a total of four

workers are allowed to operate, and the rest are

stacked in Primary Queue.

Therefore, if there is a lot of write for minority

files, the primary queue fails to process, resulting

in more waiting.

Fig 6. EC-based HDFS queue processing delay

Figure 6 shows an example consisting of a single

block group for File1, and since it is a single block

group, the representation of the block group is

omitted. It shows that write processing is not

handled due to internal processing delay problems

and is accumulated in Primary Queue, which can

cause overall system performance degradation.

Efficient Data Storage Plan

This chapter introduces Buffering and Combining

measures to improve the problem of write

degradation arising from EC-based HDFS as

described in Chapter 2.

3.1 Buffering

The Buffering step refers to the step of creating a

secondary queue for the block group processing

write, rather than waiting for the same basic block

group write request during write processing.

Figure 7 shows the processing procedure of the

Buffering step.

Fig 7. Buffering Steps

The Buffering process first verifies that secondary

queue exists. If not present, create a secondary

queue and add the standby Cell to the secondary

queue. If Secondary Queue exists, add the

requested Cell to the generated Secondary Queue.

When the add-on is complete, finally turn off the

Secondary Queue setting. Buffering can minimize

the waiting Cell to Primary Queue, thus

preventing system performance degradation.

Figure 8 shows the processing of the Buffering

step.

The Buffering step allows other workers to

process the same file without waiting for Cell to

be requested during the first Cell of the file. This

means that Master1 registers to perform Cell 1 for

File, and while Master2 is performing this,

Master2 is called to import and process Cell 2 for

File. At this time, register that Master2 is also

buffering Cell for the File. Master2 checks the file

information being processed and confirms that

Master1 handles Cell 1 for File, so it creates a

secondary queue associated with the file and

registers write2.

The interruption in Figure 8 shows Master2

putting Cell 2 in the secondary queue and taking

and processing the next Cell 3 in the primary

queue. At this time, Cell 2 is waiting in Secondary

Queue. The bottom of Figure 8 shows the next

write Cell 4 and Cell 5, taken from Primary Queue

and processed. In Secondary Queue, you can see

that Cell 2, Cell 3, Cell 4 are stacked for File.

PSYCHOLOGY AND EDUCATION (2021) 58(2): 9664-9671 ISSN: 00333077

9668

www.psychologyandeducation.net

Fig 8. Buffering Step Processing Appearance

3.2 Combining

The Combining step is not treated as a single write

unit when processing in the Worker. This refers to

the step of merging Cells accumulated in the

secondary queue through Buffering and

processing it as one Cell. Figure 9 shows the

processing procedure of the Combining step.

First of all, check if there are more than two Cell

in the Primary Queue. If only one Cell exists after

verification, the primary queue acquires the

standby Cell, performs one Cell processing, and

returns the processing result. After the return, the

step is taken to verify that the data is buffered.

Fig 9. Combining Steps

If there is more than one Cell in Primary Queue,

multiple Cells are obtained from Secondary

Queue and merged into one using the Combine

technique. The Combine is generated and the

Combine processing is performed to return the

processing result. Verify that buffering is in

progress for the next corresponding block group

and wait until the Buffering process is over. If it is

not buffering, make sure that the secondary queue

is filled, and if it is filled, perform Combine again.

If the Secondary Queue is not populated, un-set

that the block group is processing and exit

processing.

Figure 10 shows the process of Buffering and

Combining after Master2 completes the

processing of Cell 1 owned by Master1, returning

the results.

Figure 10 1) confirms that Master1 is Buffering

for the corresponding block group after returning

the processing results for Cell 1, so Master1 waits

for Buffering to complete. Figure 10 2) shows

Master1 checking secondary queue after Master2's

Buffering ends, and if multiple Cells are stacked

in secondary queue, Combine them with a

specified unit and treat them as one Cell.

PSYCHOLOGY AND EDUCATION (2021) 58(2): 9664-9671 ISSN: 00333077

9669

www.psychologyandeducation.net

Fig 10. Combining Step Processing Appearance

Figure 10 3) shows that four Cells are taken from

the Secondary Queue and processed by integrating

them into one Combine Cell. Therefore, Cell

Combining allows multiple Cells to be treated as

one, increasing Cell size, and decreasing the

number of Cells, significantly improving write

efficiency by reducing overall network load and

contention. Figure 11 shows the core part of the

code applied with Buffering and Combining.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

BEGIN

 Metadata METADATA ←get split

BlockGroup FILE_LAYOUT

 Master#1← from Request Cell by

PRIMARY_QUEUE

 IF (PRIMARY_QUEUE > 2 more Request

Cell)

 Call MASTER#2

 MASTER#2 ← Create

SECONDARY_QUEUE (Buffering START)

 SECONDARY_QUEUE[Used] ← 1

 add Request Cell ← Delay Request Cell in

PRIMARY_QUEUE

 Buffering FINISH & Combine Processing

 Result RETURN

 ELSE

 add Request Cell ← MASTER#1

 Single Processing

 Result RETURN

 END IF

 IF (Check Buffering to BlockGroup)

 Go To 6) Line

 END IF

 IF (SECONDARY_QUEUE == EMPTY)

 SECONDARY_QUEUE[Used] ← 0

 Buffering CANCEL

 END IF

END

Fig 11. Combining Core Code

(1–4) When a client stores a file to store, it divides

the file into groups of blocks of a certain size.

Through the file layout process, metadata is

recorded for each block group and passed to the

Master of the data node.

(6–12) The Master checks the Queue

Administrator for at least two requested Cells in

the Primary Queue. If there is more than one, the

other Master is called within the data node, and

the called Master generates the Secondary Queue,

recording "1") that the Secondary Queue is in use.

In addition, the called Master proceeds with the

Buffering process, which adds standby Cell to the

Primary Queue. When the addition is completed,

the Cell Combining is converted to one cell, and

the result is returned.

PSYCHOLOGY AND EDUCATION (2021) 58(2): 9664-9671 ISSN: 00333077

9670

www.psychologyandeducation.net

(13–17) If there are fewer than two requested

Cells (one Cell), the first corresponding Master

takes Cells, processes them, and returns the

results.

(19–28) After the Combining process, if Buffering

is in progress for the block group, go to 8) and

perform it again. If there is no Cell in the

secondary queue, write ("0") that the secondary

queue is not in use, and the Buffering is

terminated.

Comparison Analysis

In this chapter, performance comparisons are

presented under the name EC HDFS-BC when

basic EC-based HDFS Buffering technique

proposed in this paper, and Combining technique

are applied. It was created using the time

command to measure the operation time of the

command in Ubuntu and the dd command to

generate sample data.

Experiments are performed on the name node

using the command time ddif=/dev/zero

of=/test/50G bs=128k count=409600. A 128k

block was performed 409,600 times

(128k*819,200 = 104,857,600kb (50G)) to

measure the throughput required to store 50

gigabyte files under the 50G name in the /test/

path of the EC HDFS-BC system.

Fig 12. Comparison of EC-based HDFS with

EC-HDFS BS data throughput

Figure 12 shows the throughput of the disk when

stored in EC-based HDFS and EC HDFS-BC by

randomly generating 50 gigabyte of sample data

for EC-based HDFS and EC HDFS-BC systems.

In other words, the process of storing 50 gigabytes

of files was classified into 10 units of percentage

and repeatedly measured disk throughput over

time when stored from 0% to 10% or from 10% to

20%.

Basic EC-based HDFS shows slight performance

gains, but little change and EC HDFS-BC systems

show higher write processing as file storage

approaches completion, with approximately 2.5

times more disk processing performance than EC-

based HDFS.

The following is done 409,600 times

(128k*409,600 = 52,428,800kb (50G)) with the

command time ddif=/dev/zero of=/test/50G

bs=128k count=409600. We measured the time it

would take to store a 10 gigabytes file under the

50G name in the /test/ directory.

In addition, a 100 gigabytes file was created in the

same way as above, and the time taken to store 50

GB and 100 GB files was compared.

Fig 13. Storage Time Comparison by File Size

Figure 13 shows a performance comparison when

storing sample data in different sizes of EC HDFS

and EC HDFS-BC systems. EC-based HDFS

allows encoding to be resized to the desired size.

By default, we store data cells on a 1024K basis

(RS-Default 1024K) when using Reed-Solomon.

Thus, the encoding size was set to 1024K and the

Cell combining size to 128K.

When storing data of 50 gigabytes of sample data,

EC-based HDFS was 103 seconds and EC HDFS-

BC was 65 seconds, showing a performance

improvement of about 1.5 times. When storing

100 gigabytes of data, EC-based HDFS is 167

seconds and EC HDBS-BC is 106 seconds, which

is about 1.6 times faster.

Thus, we can see that although the storage speed

is faster when storing data with the same encoding

size and different data sizes, there is no change in

EC HDFS-BC that increases the storage speed as

the data grows.

PSYCHOLOGY AND EDUCATION (2021) 58(2): 9664-9671 ISSN: 00333077

9671

www.psychologyandeducation.net

Fig 14. Storage Time Comparison by Encoding

Size

Figure 14 shows a performance comparison with

encoding size when storing sample data. This

experiment shows performance comparison when

encoding units are set to 1024K, and 512K when

storing 100 gigabytes of data, and the Combine

size of EC HDFS–BC is set to 128K.

When 100 gigabytes of sample data were stored

when encoding in 1024K size, EC-based HDFS

was 167 seconds and EC HDFS-BC was 105

seconds, which was about 1.6 times faster. When

encoding with a smaller 512K size, EC-based

HDFS is 221 seconds and EC HDFS-BC is 131

seconds, which is about twice as fast.

Although it is the same sample data size, the

smaller the encoding, the greater the performance

improvement. This is because EC HDFS-BC

processes once through the Combination process

when processing small and large numbers of

Cells.

Conclusion

In this paper, we introduce problems arising from

Hadoop, a storage solution, when storing data, and

propose ways to improve them. Among the

various storage techniques, EC-based distributed

file systems have higher spatial efficiency

compared to replication techniques because they

are generated and stored as parity cells through

encoding. However, the disk throughput load that

occurs when saving files in an EC-based

distributed file system and the ability to access

many disks when recovering files significantly

reduces performance. Therefore, we propose an

efficient file storage and recovery method by

selecting HDFS, one of the EC-based distributed

file systems. File storage leverages Buffering and

Combining techniques, resulting in approximately

1.6x performance improvement over conventional

HDFS.

However, memory usage problems exist while

generating Secondary Queue on other masters to

perform Buffering. In other words, there is a

situation where there is a lack of memory space

for other applications while maintaining memory

for a long time, which has the disadvantage of

increasing the overall memory capacity.

Therefore, it is planning to further study ways to

solve memory-related problems of Buffering in

the future.

References

[1] B.G. Chun, F. Dabek, A. Haeberlen, E. Sit, H.

Weatherspoon, M.F. Kaashoek, J. Kubiatowicz,

R. Morris (2006) Efficient Replica Maintenance

for Distributed Storage Systems. NSDI '06

Proceedings of the 3rd conference on

Networked Systems Design & Implementation

6:45-58

[2] J. Li, B. Li (2013) Erasure coding for cloud

storage systems: A survey. Tsinghua Science

and Technology 18(3):259-272

[3] J.D Cook, R. Primmer, A. de Kwant (2014)

Compare Cost and Performance of Replication

and Erasure Coding. Hitachi Review 63:304-310

[4] D.O. Kim, H.Y. Kim, Y.K. Kim, J.J Kim (2019)

Cost analysis of erasure coding for exa-scale

storage. The Journal of Super Computing

75(8):4638-4656

[5] D. Sun, Y. Xu, Y. Li, S. Wu, C. Tian (2016)

Efficient Parity Update for Scaling RAID-like

Storage Systems Networking. Architecture and

Storage (NAS), 2016’s IEEE International

Conference 1-10

[6] L.J. Mohan, R.L. Harold, P.I.S. Caneleo, U.

Parampalli, A. Harwood (2015) Benchmarking

the Performance of Hadoop Triple Replication

and Erasure Coding on A Nation-Wide

Distributed Cloud. Network Coding (NetCod),

2015’s International Symposium 61-65

[7] Dong-Jin Shin, Kwang-Jin Kwak, Seung-Yeon

Hwang, Jeong-Min Park, Jeong-Joon Kim

(2018) Efficient Storage Structure Research in

Hadoop Distributed Storage System. 2018’s

IPACT Conference 56-57

[8] Dong-Jin Shin, Seung-Yeon Hwang, Kwang-Jin

Kwak, Kyoung-Won Park, Jeong-Min Park,

Jeong-Joon Kim (2019) A Study on the

Recovery Techniques of Distributed File System

in a Big Data Environment. 2019’s IIBC

Conference 83-86

[9] K. Nansai, X. Chen, S. Chen, J. Zang (2019)

HDFS Erasure Coding in Production.

CLOUDERA Blog

