Item Characteristics Analysis Using the Rasch Model in the Development of Quantitative Literacy Instruments For Elementary Schools Students

Dameis Surya Anggara^{1*}, Kadir², Herwindo Haribowo³

¹Universitas Negeri Jakarta, Indonesia and Universitas Pamulang, Indonesia ²Universitas Islam Negeri Syarif Hidayatullah, Indonesia ³Universitas Negeri Jakarta, Indonesia *Email: dameis_surya@yahoo.com

ABSTRACT

This research is part of the development of quantitative literacy instruments for elementary school students. This study aims to analyze the characteristics of items from the device, namely the validity of the internal structure, the reliability of internal consistency, and the differential item function [DIF]. The instruments developed were 40 multiple-choice items constructed from interpretation, representation, calculation, assumptions, analysis, and communication skills. Furthermore, the device was tested on 480 elementary school students in Semarang City and Demak Regency, Indonesia. The collected data were analyzed using the Rasch Model approach to determine the characteristics of the items. The results showed 30 items out of 40 things that had valid criteria with Outfit ZSTD values between -2.0 and +2.0. The instrument's reliability has the right standards with a Cronbach Alpha (KR-20) value of 0.70, and item reliability has particular criteria with an item reliability value of 0.99. Then, from 30 valid items, free from DIF with the mantel-haenszel probability value for each item is more than 0.05.

Keywords

Quantitative Literacy, Rasch Model, Validity, Reliability, Differential Item Function [DIF]. *Article Received: 18 October 2020, Revised: 3 November 2020, Accepted: 24 December 2020*

Introduction

Quantitative literacy is a habit of thinking involves understanding, beliefs, that and mathematical dispositions in everyday life (Wilkins, 2010). Sweet and Strand (2006) also outlined quantitative literacy is the ability to understand and process statistical information. Furthermore, Hallet (2003) describes quantitative literacy as the ability to identify, understand, and use quantitative arguments in everyday contexts. Then, Mayes (2014) explained that quantitative literacy is the use of numbers and arithmetic to measure context to understand phenomena so that they can make decisions. So it can be concluded that quantitative literacy is the ability to reason in managing information in numbers and statistics in various everyday contexts.

Quantitative literacy is one part of mathematical ability. This is under Otanrio Education (2014), which explains that quantitative literacy is one of the dimensions of mathematical literacy, apart from spatial literacy and numerical literacy. Furthermore, Lange (2006) explains that mathematical literacy consists of spatial, numerical, and quantitative literacy. Then it is consistent with Ministry of Education Regulation No. 22/2006 described that the purpose of Mathematics in elementary schools includes: understanding mathematical concepts, applying concepts, using reasoning, explaining mathematical ideas and statements, solving problems, and communicating mathematical ideas (Irawan, 2019).

The Association of American Colleges and Universities [AACU] describes that quantitative literacy has six dimensions: 1) interpretation ability is the ability to examine graphs and table information, 2) representation is the ability to conceptualize information in geometric patterns, mathematical models, and charts, (3) calculation is the ability to use arithmetic operations in solving problems, 4) assumptions is the ability to interpret information in the form of a story, 5) analysis is the ability to analyze information based on quantitative data analysis in solving problems, and 6) communication skills is the ability to conceptualize problem-solving in the form of mathematical models. (Steen, 2001). Quantitative literacy has an essential role in improving society's quality of life, Burdette and McLoughlin (2010) which states that quantitative skills are necessary for higher education, employment, and active and wise citizens. Then Wilkins (2010) describes that quantitative literacy enables a person to function in society. Then Irianto and Febrianti (2017) explained that one must be a literate person to improve the quality of self.

However, the quantitative literacy of Indonesian students has many problems. As the Trend results in International Mathematics and Science Study [TIMSS] in 2015 reported, the mathematical ability of Indonesia's fourth-grade students ranked 45th out of 50 countries with 397 points (TIMSS, 2016). The results of the Program for International Student Assessment [PISA] in 2015 reported that the mathematical abilities of Indonesian students at the age of 15 occupy 63 places in 69 countries. The power of Indonesian students at levels 5 and 6 is only 0.8%, and those at levels below 2 are 42.3% of the total number of Indonesian student participants (OECD, 2018). The evidence above confirms that Indonesian students' quantitative literacy is low, with low mathematical ability indicators.

By following up on these problems, it is necessary to increase quantitative literacy by creating effective mathematics learning. The learning process can run effectively if it considers individual differences between students (Martony, 2019). A quantitative literacy test is needed so that the teacher can know individual differences to create effective learning (Suwarsono, 1987)

A good test must have valid items, be reliable, and be free from DIF, as well as quantitative literacy tests. Cohen and Swerdlik (2010) describe that a good test is a valid and reliable test. Then Sumintono and Widhiarso (2015) explain that validity is one of the concepts determining an instrument's quality. Furthermore, Goodwin and Leech (2003) describe that fact is the most basic consideration in developing and evaluating tests. Besides, Dorans and Holland (1992) explain that DIF refers to differences in items between two groups of comparable examinees.

Schuhmann has researched quantitative literacy et al. (2005); Bookman et al. (2008); Burdette and McLoughlin (2010); and Rafianti et al. (2018) with research focusing on quantitative literacy skills assessment. Furthermore, Wilkin's (2010) research focuses on finding quantitative literacy measurement models with constructs of belief, cognition, and disposition dimensions using Exploratory Factor Analysis and Confirmatory Factor Analysis.

The studies related to quantitative literacy focus on aspects of assessment without analyzing the instruments used. Then also focus on parts of the analysis of the validity of measurement models using factor analysis. So the novelty of this study is to analyze the characteristics of quantitative literacy instrument items using the Rasch Model with different constructs consisting of interpretation, representation, calculation, assumptions, analysis, and communication skills.

Literature Review Quantitative Literacy

Quantitative literacy is part of mathematical literacy, spatial literacy, and numerical literacy (Lange, 2006; Otanrio, 2014). Quantitative literacy requires understanding and mathematical skills, such as numbers, odds, change, and relationships. Wilkins (2010) quantitative literacy is a habit of thinking that involves cognitive, belief, and attitudes towards mathematics in everyday life. It can be said that quantitative literacv a functional knowledge has of mathematical content, reasoning skills, and a towards mathematics. positive attitude Furthermore, Steen (2001), quantitative literacy is person's ability to reason and think a mathematically function to in collecting quantitative content. Besides, Sweet and Strand (2006),quantitative literacy refers to

understanding and managing statistical information.

Meanwhile, Hallet (2003), quantitative literacy can identify, understand, and use quantitative arguments in everyday contexts. Meanwhile, Mayes (2014) states that quantitative literacy is the use of numbers and arithmetic to measure context to understand phenomena so that they can make decisions. Based on these experts' descriptions, it can be concluded that quantitative literacy is the ability to reason to solve problems in the form of numbers, arithmetic, and statistics from various contexts and everyday life. Individuals with good quantitative literacy skills will be able to reason and solve quantitative problems from multiple contexts and everyday life situations. They can understand, make arguments with quantitative evidence, and communicate these arguments.

Quantitative literacy consists of 4 essential elements: counting, measurement, proportional reasoning, descriptive statistics, and basic probability (Mayes, 2014). The Association of American Colleges and Universities (in Steen, 2001) states that quantitative literacy has six dimensions, namely 1) interpretation ability, 2) representation ability, 3) calculation ability, 4) assumption ability, 5) analysis ability and 6) communication skills. The descriptions of the six indicators are presented in the following table 1.

No	Dimensions	Description
1	Interpretation	Ability to review the information presented in graphs and
		tables
2	Representation	Ability to conceptualize information into geometric patterns,
		mathematical models, and graphs
3	Calculation	Ability to use arithmetic operations to solve problems
4	Analysis	Ability to analyze information based on quantitative data
		analysis in solving problems.
5	Assumption	Ability to interpret problem-solving results from information
		in the form of story problems.
6	Communication	Ability to conceptualize problem-solving in the form of a
		mathematical model

Table 1:	Dimensions	s of Qua	ntitative	Literacy
----------	------------	----------	-----------	----------

Validity

Validity means measuring what you want to measure (Field, 2005). Wijanto (2008) states that reality is related to whether variable measures what is being measured. Furthermore, Azwar (1987) says that validity means the extent to which a measuring instrument's accuracy and accuracy (test) in performing its measuring function. Besides, Cohen and Swerdlik (2010) argue that test validity is an assessment or estimate of how well a test measures what is to be measured in a particular context.

The internal structure's validity is the accuracy of the item in measuring the defined

measuring construct through theory. The concept of internal structure validity is the same as construct validity. That is, they both know the validity based on the measuring construct. This is reinforced by Goodwin and Leech (2003). They state that fact based on the internal structure is the accuracy of a test's internal components with a measuring construct, one of which can be analyzed by Confirmatory Factor Analysis. Then, Mardapi (2008) states that construct validity refers to the extent to which the test measures the concept of a theory, which is the basis for preparing the trial, which can be proven through the test's internal structure. The statistical analysis used to determine this validity is the model item accuracy index specified by the infit coefficient and Outfit in Rasch modeling (Sumintono & Widhiarso, 2015).

Reliability

Crocker and Algina (2008) argue that reliability is the consistency of scores produced by tests. Mardapi (2008) states that the reliability principle shows that the measurement results are relatively the same if the measurement is repeated on the same object. According to Sumintono and Widhiarso (2015), reliability explains how far a measure made multiple times will produce the same information. Naga (2013) states that data reliability is the level of data confidence. Based on the expert opinion above, it can be concluded that reliability is the level of consistency/stability of the measurement data.

The method of estimating reliability in this study uses the internal consistency estimation method. This method is a way of knowing the consistency of an item by measuring one then calculating instrument. the reliability coefficient as a determinant of the reliability criteria. The reliability coefficient used is the KR 20 reliability coefficient. According to Naga (2013), Kuder Richardson's reliability coefficient was stated in 1937, which applies to dichotomous The general criteria for determining the data. reliability of data based on the KR reliability coefficient are presented in Table 2.

KR Reliability Coefficient Criteria Reliability Information											
$\alpha < 0,5$	Not Acceptable	Not Reliable									
$0,5 \le \alpha < 0,6$	Less	Not Reliable									
$0,6 \le \alpha < 0,7$	Problematic	Not Reliable									
$0,7 \le \alpha < 0,8$	Acceptable	Reliable									
$0,8 \le \alpha < 0,9$	Good	Reliable									
$0.9 \le \alpha$	Very Good	Reliable									
		(Naga, 2013: 241)									

Table 2:	General	Criteria	KR	Reliability	Coefficient
I abit 2.	U ther ar	CITCIA	171/	ixenability	Countration

Differensial Item Fungtion (DIF)

Dorans and Holland (1992) stated that DIF refers to differences in item performance between two comparable groups of examinees. DIF detection in this study refers to two different groups, namely the male and female genders. Suppose the probability value of the haenszel coat is more than 0.05. In that case, the item is not detected by DIF, which means that the item's performance for the person with the same ability who comes from two different groups (male and female sex) is the same.

Methods

Quantitative literacy instruments were developed as many as 40 multiple-choice items constructed from interpretation, representation,

www.psychologyandeducation.net

calculations, assumptions, analysis, and communication skills. Three mathematicians and 3 measurement experts then assessed the things to determine the validity of their contents. After the instrument was valid in range, it was tested on 480 elementary school students in Semarang City and Demak Regency, Indonesia. The collected data were analyzed using the Rasch Model approach with assumptions of fit items, fit person, unidimensional items, local independence, group invariance.

Data Analysis

The data analysis in this study is the Rasch Model Analysis. The Rasch model is a mathematical formula related to the probability of the outcome when one person answers an item with the person's characteristics and item presented in Table 3 (McArthur, 1987). In full, the data analysis is

	Table 3: Data Analysis Techniques												
No	Aspect of Analysis	Analytical Approach	Criteria										
1	Assumption of the Ra	sch Model											
	Fit items and fit	Rasch Model	Fit items and fit persons if -2.0 <zstd (boone,="" <+2.0="" et<="" th=""></zstd>										
	person		al, 2014)										
	Unidimensional	Rasch Model	Unidimensional assumptions are met if the value of the test										
			variant \geq 20% (Reckase, 1979)										
	Local Independence	Rasch Model	Assumptions of local independence are met if the residual										
			correlation value ≤ 0.20 (Christensen et al., 2016).										
	Group Invariance	Rasch Model	Examination of group invariance can be guided by an										
			increase invalid scores along with ability levels (Kang et										
			al. 2018)										
2	Characteristics of iten	ns											
	The validity of	Rasch Model	items have valid internal structure criteria, if the outfit										
	Internal Structures		value is ZSTD: -2.0 <zstd (boone,="" 2014).<="" <+2.0="" al,="" et="" th=""></zstd>										
	Item and Instrument	Rasch Model	The instrument would have reliable criteria if the										
	Reliability		reliability coefficient KR-20 \ge 0.70 (Naga, 2013)										
			Items have reliable criteria, if the value of Item Reliability										
			\geq 0.67 (Fisher, 2007)										
	Differential Item	Rasch Model	I The items are free from DIF if the Mantel-Haenszel										
	Function [DIF].		probability is ≥ 0.05										

Results

Before analyzing the item characteristics of quantitative literacy instruments using the Rasch Model, it must meet the Rasch Model's assumptions. The assumptions are 1) item fit and person fit, 2) unidimensional, 3) local independence, and 4) group invariance. The first assumption is checking the item fit and person fit. The purpose of this assumption is to determine the appropriateness/suitability of items and persons with the Rasch Model. Initially, the number of items was 40 items, and the number of people was 480. After analysis, 10 misfit items and 65 misfit people with ZSTD values outside the -2.0 <ZSTD <+2.0 criteria. Misfit items and person misfits are presented in Table 4.

Misfit	Total	Number
Item	10 Item	35, 28, 25, 22, 27, 39, 21, 2, 31, 9
Person	65 Person	216, 115, 179, 124, 169, 426, 110, 23, 20, 241, 287, 400, 371, 202, 118, 164,
		105, 452, 163, 58, 455, 442, 347, 136, 257, 162, 327, 8, 270, 187, 247, 186, 14,
		391, 325, 242, 249, 125, 213, 19, 324, 148, 181, 106, 201, 250, 129, 354, 245,
		121, 271, 67, 350, 474, 104, 68, 368, 305, 383, 428, 256, 31, 183, 217, 57

Table 4: Misfit Item dan Person

Then the misfit items and the misfit person are eliminated from the data analysis. The

remaining items and person are analyzed again until they show the fit items and person fit results. The fit items' works are presented in table 3, and the relevant person results are presented in Table

Table 5: Fit Item Results

5.

EN	TO						OU	TEI	РЛ	Γ-	EV	МА		
TR	TA	CO	MEA	MO	INI	FIT	00		MEA	ASU		TC		
Y	L		SUD	DE			1	L	R	E	AC T	и ПС П	ITE	G
NU	SC		SUK	L	М	ZS	М	ZS	CO	Е		п EV	Μ	U
MB	OR	1	Е	S.E	NS	Т	NS	Т		XP	0D \$%	D%		
ER	Е				Q	D	Q	D	КΚ.		570	F 70		
36	149	414	.22	.11	1.0	1.8	1.1	1.7	А	.34	67.	69.	ITE	0
					8		0		.24		4	0	M36	
24	160	415	.10	.11	1.0	1.8	1.0	1.7	В	.34	64.	67.	ITE	0
					7		9		.25		1	4	M24	
8	77	415	1.25	.13	1.0	1.0	1.0	.7	С	.32	80.	82.	ITE	0
					9		8		.23		2	6	M8	
17	150	414	.21	.11	1.0	1.0	1.0	1.2	D	.34	67.	68.	ITE	0
					4		7		.28		9	8	M17	
38	160	411	.08	.11	1.0	1.3	1.0	1.2	Е	.34	63.	67.	ITE	0
					5		6		.27		7	1	M38	
33	99	415	.89	.12	1.0	.5	1.0	.7	F	.33	77.	78.	ITE	0
					3		6		.29		3	1	M33	
13	118	415	.62	.12	1.0	1.0	1.0	.7	G	.34	71.	74.	ITE	0
					5		5		.28		6	5	M13	
11	37	413	2.18	.18	1.0	.4	1.0	.1	Η	.28	90.	91.	ITE	0
					5		1		.24		8	3	M11	
23	95	412	.94	.12	1.0	.6	1.0	.2	Ι	.33	76.	78.	ITE	0
					4		1		.30		7	8	M23	
26	83	415	1.14	.13	1.0	.4	.98	1	J	.33	80.	81.	ITE	0
					3				.31		2	3	M26	
4	152	414	.19	.11	1.0	.5	1.0	.6	Κ	.34	67.	68.	ITE	0
					2		3		.31		9	5	M4	
29	164	414	.05	.11	1.0	.8	1.0	.4	L	.34	63.	66.	ITE	0
					3		2		.30		8	8	M29	
30	226	409	67	.11	1.0	.9	1.0	.0	Μ	.31	58.	63.	ITE	0
					3		0		.29		9	2	M30	
18	70	415	1.38	.14	1.0	.2	1.0	.0	Ν	.32	83.	84.	ITE	0
					1		0		.31		6	0	M18	
40	153	413	.17	.11	.99	2	1.0	.0	0	.34	69.	68.	ITE	0
							0		.35		0	3	M40	
6	137	415	.37	.11	.99	2	.99	1	0	.34	72.	71.	ITE	0
									.35		3	0	M6	
32	262	414	-1.03	.11	.99	2	.95	8	n	.30	65.	66.	ITE	0
									.32		9	2	M32	
34	166	413	.02	.11	.98	6	.99	2	m	.34	67.	66.	ITE	0
									.36		1	5	M34	

ISSN: 00333077

EN TR Y	TO TA L	CO UN	MEA	MO DE	INI	FIT	OU J	TFI ſ	PT MEA R	Γ- ASU E	EX AC T	MA TC H	ITE	G
NU MB ER	SC OR E	T	E	L S.E	M NS Q	ZS T D	M NS Q	ZS T D	CO RR.	E XP	OB S%	EX P%	М	U
14	128	415	.49	.11	.99	2	.97	5	1	.34	73.	72.	ITE	0
									.36		7	6	M14	
16	197	415	31	.10	.98	5	.96	9	k	.33	64.	63.	ITE	0
									.35		6	6	M16	
20	354	415	-2.34	.14	.97	3	.87	9	j	.21	85.	85.	ITE	0
-	206	410	1.00	11	07	-	0.0		.26	•	5	3	M20	0
1	286	413	-1.33	.11	.97	7	.92	-	1	.28	69.	70.	TTE	0
27	170	412	11	11	06		05	1.0	.33	22	2	5	M/	0
37	1/8	413	11	.11	.96	-	.95	-	n 20	.33	68. 5	65. 1	IIE M27	0
1	102	414	02	10	06	1.0	05	1.1	.38	24	כ רד	1 77	M3/	Δ
1	105	414	.82	.12	.90	0	.95	3	29 29	.34	//. 0	//. 2	IIE M1	0
10	103	<i>A</i> 1 <i>A</i>	28	10	06		0/		.30 f	33	65	63	ITE	Ο
19	195	414	20	.10	.90	13	.94	- 13	38	.55	05.	05. 8	M19	0
3	180	414	- 13	11	96	1.5	93	1.5	.50 e	33	67	64	ITE	0
5	100	111	.15	.11	.70	13	.75	15	39	.55	9	9	M3	U
15	107	415	.77	.12	.94	9	.95	6	d.	.34	79.	76.	ITE	0
						.,			.39		3	5	M15	
10	405	413	-4.57	.36	.95	.0	.40	_	с	.08	98.	98.	ITE	0
								1.7	.22		1	1	M10	
5	235	415	72	.10	.95	-	.90	-	b	.31	64.	63.	ITE	0
						1.7		1.8	.38		1	4	M5	
12	202	413	37	.10	.95	-	.92	-	a	.33	65.	63.	ITE	0
						1.8		1.7	.40		9	3	M12	
ME	167	413	.00	.12	1.0	.0	.97	2			72.	72.		
AN	.5	.8			0						3	6		
S.D.	79.	1.4	1.21	.05	.04	1.0	.12	1.0			8.9	8.8		
	8													

Table 6: Fit Person Result													
ENTR Y NUM	TOT AL SCO	COU NT	MEAS URE	MOD EL	INF	TT	OUT	FIT	PT MEAS E	- SUR	EXA CT OBS	MAT CH EXP	PERS ON
BER	RE			S.E	MN	ZS	MN	ZS	COR	ΕX	%	%	
DER	TLL				SQ	TD	SQ	TD	R.	Р.	70	70	
34	7	30	-1.37	.49	1.53	1.7	1.95	1.9	А	.45	70.0	81.3	34 L
									.07				
326	7	30	-1.37	.49	1.45	1.5	1.86	1.8	В	.45	76.7	81.3	326 P

.10

34 L

326 P

ISSN: 00333077

ENTED	тот								РТ	-	EXA	MAT	
		COU	MEAS	MOD	INF	TIT	OUT	FIT	MEAS	SUR	ЕЛА		DEDC
	AL SCO	NT	URE	EL					E		OBS	EXD	ON
BFR	RF	111	UKL	S.E	MN	ZS	MN	ZS	COR	EX	005 %	۲.XI %	OIV
DLK	KL				SQ	TD	SQ	TD	R.	P.	70	/0	
48	6	30	-1.62	.52	1.43	1.3	1.86	1.6	С	.46	80.0	84.2	48 L
									.12				
255	7	30	-1.37	.49	1.14	.6	1.82	1.7	D	.45	76.7	81.3	255 L
									.29				
418	5	30	-1.91	.56	1.69	1.6	1.76	1.3	E	.47	76.7	86.9	418 L
									.03				
333	16	30	.25	.40	1.35	2.6	1.71	1.6	F .06	.37	50.0	65.5	333 L
18	7	30	-1.37	.49	1.30	1.1	1.67	1.4	G	.45	70.0	81.3	18 L
• • • •	0	•							.23			-0.4	A A A A
399	8	30	-1.14	.46	1.05	.3	1.61	1.5	Н	.44	76.7	78.6	399 L
154	10	20	20	4.1	1.00	1.0	1 (1	1.6	.36	4.1	60.0	(1) 0	1540
154	12	30	39	.41	1.30	1.8	1.61	1.6	I.14	.41	60.0 70.0	69.2	154 P
/5 240	8	30 20	-1.14	.40	1.44	1./	1.58	1.4	J .11 V	.44	/0.0	/8.0	/5 L 240 I
349	0	30	-1.62	.52	1.09	.4	1.50	1.2	K 24	.40	80.7	84.2	349 L
16	0	30	04	11	1.02	r	1 55	1 /	.34 I	12	83.3	76.0	16 D
10	9	30	94	.44	1.05	.2	1.55	1.4	L 35	.43	65.5	70.0	10 Г
13	Q	30	_ 0/	11	1.06	Λ	1 53	1 /	.55 M	13	767	76.0	13 I
15)	50)+		1.00		1.55	1.7	34	.+5	70.7	70.0	13 L
192	7	30	-1 37	49	1 1 1	5	1 53	12	.J T N	45	767	813	192 I
172	,	50	1.57	.17	1.11		1.55	1.2	34	.15	/0./	01.5	1)2 L
413	5	30	-1.91	.56	1.33	.9	1.53	1.0	0	.47	83.3	86.9	413 L
_	-								.23				-
21	13	30	23	.40	1.27	1.8	1.51	1.4	P.16	.40	60.0	67.5	21 L
43	11	30	57	.42	1.46	2.4	1.46	1.3	Q	.42	50.0	71.3	43 L
									.08				
191	14	30	07	.40	1.27	1.9	1.46	1.2	R	.39	70.0	66.2	191 P
									.16				
172	9	30	94	.44	1.33	1.4	1.42	1.2	S .19	.43	70.0	76.0	172 P
54	13	30	23	.40	1.27	1.9	1.42	1.2	Т	.40	53.3	67.5	54 P
									.18				
36	11	30	57	.42	1.33	1.8	1.42	1.2	U	.42	56.7	71.3	36 P
									.16				
127	9	30	94	.44	1.39	1.7	1.31	.9	V	.43	63.3	76.0	127 L
									.17				
438	7	30	-1.37	.49	1.33	1.1	1.39	1.0	W	.45	76.7	81.3	438 L
0		•	•		1.00	• •	1.00		.22			~ •	0-1-
361	12	30	39	.41	1.39	2.3	1.38	1.1	X	.41	46.7	69.2	361 L
272	10	20	20	40	110	1 1	1.27	1 1	.13	40	(0.0	CO 4	272 1
3/3	12	29	29	.42	1.10	1.1	1.57	1.1	Y QC	.40	69.0	68.4	3/3 L
									.25				

ISSN: 00333077

ENTR Y	TOT AL	COU	MEAS	MOD EL	INI	ŦΠ	OUT	TFIT	PT MEA E]- SUR	EXA CT	MAT CH EXP	PERS
BER	RE	1 1 1	UKE	S.E	MN	ZS	MN	ZS	COR	EX	· OBS %	EAF %	ON
DLR	ΠL				SQ	TD	SQ	TD	R.	Р.	70	70	
441	5	30	-1.91	.56	1.37	1.0	1.34	.7	Ζ	.47	83.3	86.9	441 P
		• •						-	.25				
120	16	30	.25	.40	1.33	2.5	1.32	.9	.12	.37	50.0	65.5	120 L
88	14	30	07	.40	1.28	2.0	1.24	.7	.19	.39	50.0	66.2	88 P
88	14	30	07	.40	1.28	2.0	1.24	.7	.19	.39	50.0	66.2	88 P
45	7	30	-1.37	.49	.82	6	.70	6	z .58	.45	83.3	81.3	45 L
304	15	30	.09	.40	.82	-1.5	.73	6	y .52	.38	70.0	65.3	304 L
342	26	30	2.23	.56	.82	4	.60	5	x .38	.23	86.7	86.7	342 P
93	9	30	94	.44	.82	8	.71	8	W	.43	83.3	76.0	93 P
4.40	• •	•	4 40		0.1	0			.57	• •			
140	23	30	1.48	.46	.81	8	.66	4	v .45	.29	80.0	77.8	140 L
477	13	30	23	.40	.80	-1.5	.71	8	u .56	.40	73.3	67.5	477 P
292	10	30	75	.43	.80	-1.1	.78	6	t .56	.42	80.0	73.5	292 P
46	9	30	94	.44	.80	9	.67	9	s .59	.43	83.3	76.0	46 P
224	16	30	.25	.40	.80	-1.7	.71	6	r .53	.37	76.7	65.5	224 L
445	21	30	1.09	.43	.79	-1.2	.70	3	q .48	.32	83.3	72.5	445 P
233	13	30	23	.40	.79	-1.6	.72	8	p .56	.40	86.7	67.5	233 L
290	29	30	3.82	1.03	.79	.1	.20	5	o .34	.13	96.7	96.7	290 L
134	10	30	75	.43	.78	-1.2	.66	-1.0	n .60	.42	80.0	73.5	134 P
303	10	30	75	.43	.78	-1.2	.66	-1.0	m	.42	80.0	73.5	303 L
								_	.60				
111	10	30	75	.43	.77	-1.2	.71	8	1.59	.42	80.0	73.5	111 P
457	16	30	.25	.40	.77	-2.0	.69	7	k .55	.37	76.7	65.5	457 P
133	8	30	-1.14	.46	.76	-1.0	.62	-1.0	j .62	.44	83.3	78.6	133 L
155	11	30	57	.42	.76	-1.5	.67	-1.0	i .60	.42	83.3	71.3	155 P
295	24	30	1.70	.48	.75	9	.55	7	h .47	.27	83.3	80.8	295 P
12	8	30	-1.14	.46	.75	-1.0	.62	-1.0	g .63	.44	83.3	78.6	12 L
274	10	30	75	.43	.75	-1.4	.63	-1.1	f .62	.42	80.0	73.5	274 L
432	7	30	-1.37	.49	.74	9	.59	-1.0	e .64	.45	83.3	81.3	432 P
83	6	30	-1.62	.52	.74	8	.58	8	d .65	.46	86.7	84.2	83 L
51	19	30	.74	.41	.73	-2.0	.64	6	c .55	.34	83.3	68.7	51 P
130	15	30	.09	.40	.71	-2.5	.64	9	b .60	.38	83.3	65.3	130 P
152	9	30	94	.44	.70	-1.5	.58	-1.3	a .66	.43	83.3	76.0	152 P
MEAN	12.1	29.9	40	.43	1.00	.0	.97	.0			72.3	72.6	
S.D.	4.3	.4	.79	.05	.15	.8	.24	.6			8.6	5.9	

Based on table 3, it can be explained that the number of items originally was 40 items. Ten things were eliminated from the data analysis, so there were still 30 items. All remaining items have a ZSTD Outfit value of -2.0 to +2.0. Furthermore,

based on table 4, it can be explained that the initial number of people was 480, then 65 people were eliminated so that there were still 415 people. All remaining persons have a ZSTD Outfit value of -2.0 to +2.0. So it can be concluded that the 30 6016 items and 415 people fit the Rasch model and qualify to be analyzed using the Rasch Model. In

summary, the results of the fit item and fit person analysis are presented in table 7.

Table 7: Results of the Item Fit and Person Fit Tests											
Category	Total	Misfit Total	Fit Total								
Item	40 item	10 item	30 item								
Person	480 person	65 person	415 person								

The second assumption is the Unidimensional Item. This assumption explains that each item must measure just one ability. The

unidimensional results of the items in this study are presented in table 8.

Table of RAW RESIDUAL Variance (in Eigenvalue units)										
		I	al	Mod eled						
Total raw Variance in	=	39.	100.		100.0					
observations		8	0%		%					
Raw Variance explained by	=	9.8	24.6		21.9					
measures			%		%					
Raw Variance explained by	=	2.6	6.6		5.9%					
persons			%							
Raw Variance explained by	=	7.1	17.9		16.0					
items			%		%					
Raw unexplained Variance	=	30.	75.4	100.	78.1					
(total)		0	%	0%	%					
Unexplained Variance in 1st	=	1.7	4.2	5.6						
contrast			%	%						
Unexplained Variance in	=	1.6	4.0	5.3						
2nd contrast			%	%						
Unexplained Variance in 3rd	=	1.4	3.6	4.8						
contrast			%	%						
Unexplained Variance in 4th	=	1.4	3.5	4.7						
contrast			%	%						
Unexplained Variance in 5th	=	1.3	3.3	4.4						
contrast			%	%						

Table 8: Item Unidimensional Results

Based on table $\overline{6}$, it can be explained that the value of the Raw Variance Explained by Empirical Measures is 24.6%, exceeding 20%, so the Unidimensional item's assumptions are met. So it can be concluded that things only measure quantitative literacy and meet the requirements to be analyzed using the Rasch Model.

The third assumption is the local independence. This assumption explains that the

answers generated between test takers and between items do not affect each other. The results of the regional autonomy of the things in this study are presented in Tables 9, and the results of the person's local independence shown in Table 10.

Tab	Table 9: Local Independence Results of Items										
	LAF	RGEST	OBSE	RVATI	ON						
	RESI	DUAL	CORR	ELATI	ONS						
	τ	JSED '	TO IDE	INTIFY							
]	DEPEI	NDENT	TITEM							
	COR	EN		EN							
	REL-	TR		TR							
	ATIO	Y		Y							
	Ν	NU		NU							
		MB	ITE	MB	ITE						
		ER	Μ	ER	Μ						
	17	5	ITE	24	ITEM						
			M5		24						
	17	17	ITE	20	ITEM						
			M17		20						
	15	8	ITE	32	ITEM						
			M8		32						
	15	1	ITE	18	ITEM						
			M1		18						
	15	18	ITE	32	ITEM						
			M18		32						
	14	6	ITE	32	ITEM						
			M6	_	32						
	14	11	ITE	36	ITEM						
			M11		36						
	14	14	ITE	18	ITEM						
		_	M14		18						
	13	5	ITE	17	ITEM						
			M5		17						
	13	13	ITE	24	ITEM						
			M13		24						

Table 10: Local Independence Results of Persons

LAF	RGEST	OBSE	RVATI	ON
RESI	DUAL	CORRI	ELATI	ONS
τ	USED '	TO IDE	NTIFY	
D	EPENI	DENT P	ERSO	N
COR	EN		EN	
REL-	TR		TR	
ATIO	Y		Y	
Ν	NU		NU	
Ν	NU MB	PER	NU MB	PER
Ν	NU MB ER	PER SON	NU MB ER	PER SON
N 73	NU MB ER 243	PER SON 243	NU MB ER 387	PER SON 387 P
N 73	NU MB ER 243	PER SON 243 L	NU MB ER 387	PER SON 387 P

		L		
66	102	102	243	243 L
		L		
66	204	204 P	315	315 P
65	27	27 P	206	206 P
64	120	120	446	446 L
		L		
63	285	285	425	425 P
		L		
63	215	215	339	339 L
		L		
63	55	55 L	379	379 L
63	77	77 L	462	462 P

Based on table 9, it can be explained that all residual correlations have a value of less than 0.20, so the assumption of independence between items is fulfilled. Furthermore, based on table 10, it can be explained that all the values of residual correlations have a value of less than 0.20, so the assumption of independence between persons is fulfilled. So it can be concluded that the answers between items and between-person do not influence each other and qualify to be analyzed using the Rasch Model.

ased on table 10,
alues of residual
than 0.20, so the
ween persons isThe final assumption is group invariance.
This assumption explains that all groups of person
abilities (high - low) invariably refer to the item's
characteristic curve. The results of group
invariance in this study are presented in table 11.Table 11: Persults of Croup Invariance.

Table 11. Results of Group Invariance											
ENTRY	DATA	SCORE	DATA		AVERAGE	S.E.	OUTF	PTMEA			
NUMBER	CODE	VALUE	COUNT	%	MEASURE	MEAN	MNSQ	CORR.	ITEM		
11		***	2	0#	39	.34		.00	ITEM11		
	0	0	376	91	46	.04	1.1	24			
	1	1	37	9	.20	.16	1.0	.24			
18	0	0	345	83	51	.04	1.0	31	ITEM18		
	1	1	70	17	.15	.12	1.0	.31			
8	0	0	338	81	49	.04	1.1	23	ITEM8		
	1	1	77	19	01	.10	1.1	.23			
26	0	0	332	80	52	.04	1.0	31	ITEM26		
	1	1	83	20	.09	.10	1.0	.31			
23		***	3	1#	41	.26		.00	ITEM23		
	0	0	317	77	53	.04	1.0	30			
	1	1	95	23	.03	.09	1.0	.30			
33	0	0	316	76	53	.04	1.0	29	ITEM33		
	1	1	99	24	.02	.10	1.1	.29			
1		***	1	0#	15			.02	ITEM1		
	0	0	311	75	57	.04	.9	38			
	1	1	103	25	.12	.10	1.0	.38			
15	0	0	308	74	58	.03	.9	39	ITEM15		
	1	1	107	6	.13	.10	1.0	.39			
13	0	0	297	72	54	.04	1.1	28	ITEM13		
	1	1	118	28	05	.08	1.0	.28			

ISSN: 00333077

ENTRY	DATA	SCORE	DATA		AVERAGE	S.E.	OUTF	PTMEA	
NUMBER	CODE	VALUE	COUNT	%	MEASURE	MEAN	MNSQ	CORR.	ITEM
14	0	0	287	69	59	.04	1.0	36	ITEM14
	1	1	128	31	.03	.08	1.0	.36	
6	0	0	278	67	59	.04	.9	35	ITEM6
	1	1	137	33	.00	.08	1.0	.35	
36		***	1	0#	.34			.05	ITEM36
	0	0	265	64	54	.04	1.1	24	
	1	1	149	36	15	.08	1.1	.24	
17		***	1	0#	33			.00	ITEM17
	0	0	264	64	57	.04	1.0	28	
	1	1	150	36	10	.08	1.1	.28	
4		***	1	0#	16			.01	ITEM4
	0	0	262	63	59	.04	1.1	31	
	1	1	152	37	08	.07	1.0	.31	
40		***	2	0#	42	.34		.00	ITEM40
	0	0	260	63	61	.04	1.0	35	
	1	1	153	37	04	.07	1.0	.35	
24	0	0	255	61	56	.04	1.1	25	ITEM24
	1	1	160	39	15	.07	1.1	.25	
38		***	4	1#	.07	.47		.06	ITEM38
	0	0	251	61	58	.04	1.0	27	
	1	1	160	39	13	.07	1.1	.27	
29		***	1	0#	15			.02	ITEM29
	0	0	250	60	60	0.4	1.0	30	
	1	1	164	40	10	0.7	1.0	.30	
29		***	2	0#	-1.00	.32		05	ITEM34
	0	0	247	60	63	.04	1.0	36	
_	1	1	166	40	05	.07	1.0	.36	
37		***	2	0#	37	.39		.00	ITEM37
	0	0	235	57	66	.04	.9	38	
_	1	1	178	43	05	.07	1.0	.38	
3		***	1	0#	-1.08			04	ITEM3
	0	0	234	57	67	.04	.9	39	
	1	1	180	43	04	.06	.9	.39	
19		***	1	0#	.31			.04	ITEM19
	0	0	221	53	68	.04	.9	38	
	1	1	193	47	.08	.06	1.0	.38	
24	0	0	218	53	67	.04	.9	35	ITEM16
	1	1	197	47	10	.06	1.0	.35	
12		***	2	0#	97	.10		05	ITEM12
	0	0	211	51	70	.04	.9	40	
	1	1	202	49	08	.06	.9	.40	
30		***	6	1#	.01	.34		.06	ITEM30
	0	0	183	45	66	.04	.9	29	

ENTRY	DATA	SCORE	DATA	1	AVERAGE	S.E.	OUTF	PTMEA	
NUMBER	CODE	VALUE	COUNT	%	MEASURE	MEAN	MNSQ	CORR.	ITEM
	1	1	226	55	20	.06	1.1	.29	
5	0	0	180	43	75	.04	.9	38	ITEM5
	1	1	235	57	13	.06	1.0	.38	
32		***	1	0#	-1.04			04	ITEM32
	0	0	152	37	73	.05	.9	32	
	1	1	262	63	21	.05	1.0	.32	
7		***	2	0#	07	.08		.03	ITEM7
	0	0	127	31	79	.05	.9	33	
	1	1	286	69	23	.05	1.0	.33	
20	0	0	61	15	90	.07	.8	26	ITEM20
	1	1	354	18	31	.04	1.0	.26	
10		***	2	0#	48	.09		01	ITEM10
	0	0	8	2	-1.64	.12	.4	22	
	1	1	405	98	37	.04	1.0	.22	

Based on table 11, it can be explained that the average measure for each item always increases, meaning that it meets the group invariance. So it can be concluded that the characteristics of things are still fixed and do not depend on the ability of test-takers and qualify to be analyzed using the Rasch Model.

After all, assumptions are met; the next step is to analyze quantitative literacy items' characteristics using the Rasch Model approach. The aspects of the things to be interpreted are: 1) the validity of the internal structure of the items, 2) the reliability of objects and instruments, and 3) DIF

The validity of Internal Structures

The internal structure's validity is the accuracy of the items in measuring the defined constructs through theory. The results of the fact of the internal system are presented in table 12.

ENTR Y	TOT AL	COU	MEAS	MOD EL	INF	ŦΠ	OUT	FIT	PT MEAS E	SUR	EXA CT	MAT CH	ITE	G
	SCO RE	IN I	UKE	S.E	MN	ZS	MN	ZS	СО	EX	% 0B2	EAP %	IVI	
DER	κĽ				SQ	TD	SQ	TD	RR.	Р.	70	/0		
36	149	414	.22	.11	1.08	1.8	1.10	1.7	А	.34	67.4	69.0	ITE	0
									.24				M36	
24	160	415	.10	.11	1.07	1.8	1.09	1.7	В	.34	64.1	67.4	ITE	0
									.25				M24	
8	77	415	1.25	.13	1.09	1.0	1.08	.7	С	.32	80.2	82.6	ITE	0
									.23				M8	
17	150	414	.21	.11	1.04	1.0	1.07	1.2	D	.34	67.9	68.8	ITE	0
									.28				M17	
38	160	411	.08	.11	1.05	1.3	1.06	1.2	E	.34	63.7	67.1	ITE	0
									.27				M38	
33	99	415	.89	.12	1.03	.5	1.06	.7	F	.33	77.3	78.1	ITE	0

Table 12: Results of Internal Structure Validity

ISSN: 00333077

ENTR Y	TOT AL	COU	MEAS	MOD EL	INF	FIT	OUT	FIT	PT MEAS E	`- SUR	EXA CT	MAT CH	ITE	G
NUM BER	SCO RE	NT	URE	S.E	MN	ZS	MN	ZS	CO	EX	OBS %	EXP %	М	-
					SQ	TD	SQ	TD	RR.	Р.			1/22	
12	110	115	67	10	1.05	1.0	1.05	7	.29	24	71.6	715	M33	0
15	110	413	.02	.12	1.05	1.0	1.05	.7	28	.34	/1.0	74.3	M13	0
11	37	413	2.18	.18	1.05	.4	1.01	.1	.20 H	.28	90.8	91.3	ITE	0
									.24				M11	
23	95	412	.94	.12	1.04	.6	1.01	.2	I .30	.33	76.7	78.8	ITE	0
													M23	
26	83	415	1.14	.13	1.03	.4	.98	1	J .31	.33	80.2	81.3	ITE	0
4	1.50	41.4	10		1.00	-	1.02	6	17	24		60 5	M26	0
4	152	414	.19	.11	1.02	.5	1.03	.6	K 21	.34	67.9	68.5	IIE M4	0
29	164	414	05	11	1.03	8	1.02	4	.51 L	34	63.8	66.8	ITE	0
27	101		.05		1.05	.0	1.02	•••	.30		05.0	00.0	M29	U
30	226	409	67	.11	1.03	.9	1.00	.0	М	.31	58.9	63.2	ITE	0
									.29				M30	
18	70	415	1.38	.14	1.01	.2	1.00	.0	Ν	.32	83.6	84.0	ITE	0
									.31				M18	
40	153	413	.17	.11	.99	2	1.00	.0	0	.34	69.0	68.3	ITE M40	0
6	127	415	27	11	00	2	00	1	.35	24	77 2	71.0	M40 ITE	0
0	137	415	.57	.11	.99	2	.99	1	35	.34	12.3	/1.0	M6	0
32	262	414	-1.03	.11	.99	2	.95	8	n	.30	65.9	66.2	ITE	0
									.32				M32	
34	166	413	.02	.11	.98	6	.99	2	m	.34	67.1	66.5	ITE	0
									.36				M34	
14	128	415	.49	.11	.99	2	.97	5	1.36	.34	73.7	72.6	ITE	0
16	107	415	21	10	00	F	06	0	1.	22	61.6	(2)	M14	0
10	197	415	31	.10	.98	3	.90	9	К 35	.33	04.0	03.0	IIE M16	0
20	354	415	-2.34	.14	.97	3	.87	9	i.26	.21	85.5	85.3	ITE	0
								.,	J .= 0				M20	-
7	286	413	-1.33	.11	.97	7	.92	-1.0	i .33	.28	69.2	70.3	ITE	0
													M7	
37	178	413	11	.11	.96	-1.0	.95	-1.1	h	.33	68.5	65.1	ITE	0
4	100	41.4	0.2	10	0.6	<i>.</i>	05	-	.38	24	77 0		M37	0
1	103	414	.82	.12	.96	6	.95	5	g 20	.34	//.8	11.3		0
19	193	4 14	- 28	10	96	-13	94	-13	.30 f 38	33	65.0	63.8	ITE	0
17	175	717	.20	.10	.70	1.5	.74	1.5	1.50	.55	05.0	05.0	M19	U
3	180	414	13	.11	.96	-1.3	.93	-1.5	e .39	.33	67.9	64.9	ITE	0
													M3	

ENTR Y NUM	TOT AL SCO	COU NT	MEAS URE	MOD EL S F	INF	FIT	OUT	TFIT	PT MEAS E	SUR	EXA CT OBS	MAT CH EXP	ITE M	G
BER	RE			5.1	SQ	TD	SQ	TD	RR.	P.	%	%		
15	107	415	.77	.12	.94	9	.95	6	d	.34	79.3	76.5	ITE	0
									.39				M15	
10	405	413	-4.57	.36	.95	.0	.40	-1.7	c .22	.08	98.1	98.1	ITE	0
													M10	
5	235	415	72	.10	.95	-1.7	.90	-1.8	b	.31	64.1	63.4	ITE	0
									.38				M5	
12	202	413	37	.10	.95	-1.8	.92	-1.7	a .40	.33	65.9	63.3	ITE	0
													M12	
MEA	167.	413.8	.00	.12	1.00	.0	.97	2			72.3	72.6		
Ν	5													
S.D.	79.8	1.4	1.21	.05	.04	1.0	.12	1.0			8.9	8.8		

Based on table 12, it can be explained that 30 items have a ZSTD Outfit value between -2.0 to +2.0. So it can be concluded that the 30 items have valid criteria.

Item and Instrument Reliability

Reliability is the level of consistency/stability of data from the measurement. The results of item and instrument reliability are presented in table 13.

Table 13: Item and Instrument Reliability Results											
	SUMMARY OF 415 MEASURED PERSON										
	RAW	COUNT	MEASUDE	MODEL	INF	FIT	OUT	FIT			
	SCORE	COUNT	MEASURE	ERROR	MNSQ	ZSTD	MNSQ	ZSTD			
	12.1	29.9	40	13	1.00	0	07	0			
MEAN				.43	1.00	.0	.97	.0			
S.D.	4.3	.4	.79	.05	.15	.8	.24	.6			
MAX.	29.0	30.0	3.82	1.03	1.69	2.6	1.95	1.9			
MIN.	3.0	27.0	-2.71	.40	.70	-2.5	.20	-1.3			
REAL I	RMSE .4	5 TRUE S	D .65 SEPA	ARATION	1.44 PE	RSON R	ELIABIL	JTY			
.67											
MODEL	RMSE	.44 TRUE	SD .66 SEI	PARATION	N 1.51 P	ERSON	RELIAB	ILITY			
.69											
S.E. OF	PERSON	MEAN =	.04								
			DELETED:	65 PERS	ON						
			VALID RESP	ONSES: 9	9.7%						
PERSO	ON RAW S	SCORE-TO	D-MEASURE	CORRELA	TION =	.99 (appı	oximate o	due to			
			missi	ng data)							
CR	ONBACH	I ALPHA (KR-20) PERS	ON RAW S	SCORE R	ELIABI	$LITY = .^{\prime}$	70			
	(approximate due to missing data)										

SUMMARY OF 30 MEASURED ITEM										
RAW	COUNT	MEASURE	MODEL	INFIT	OUTFIT					

	SCORE	1		ERROR	MNSQ	ZSTD	MNSQ	ZSTD		
	167.5	413.8	.00	12	1.00	0	07	2		
MEAN				.12	1.00	.0	.97	2		
S.D.	79.8	1.4	1.21	.05	.04	1.0	.12	1.0		
MAX.	405.0	415.0	2.18	.36	1.09	1.8	1.10	1.7		
MIN.	37.0	409.0	-4.57	.10	.94	-1.8	.40	-1.8		
REAL F	RMSE .	13 TRUE SD	1.20 SEPA	ARATION	8.98 IT	EM RE	LIABILI	ГҮ .99		
MODEL RMSE .13 TRUE SD 1.20 SEPARATION 9.06 ITEM RELIABILITY										
.99										
S.E. OF	ITEM M	IEAN = .22								

DELETED: 10 ITEM

Based on table 13, it can be explained that the Cronbach Alpha (KR-20) value is 0.70, so the reliability of the instrument has good criteria, which means the interaction between 415 people and 30 items as a whole has good criteria. The value of the item reliability is 0.99 with special criteria, which means consistency of answers on 30 items with special criteria. The grouping of items can be determined through formulas H = $\frac{(4 \times separation)+1}{3}$ by looking at the separation value of 8.98. Here are the results and the calculation process: $H = \frac{(4 \times 8,98)+1}{3} = \frac{(35,92)+1}{3} = \frac{36,92}{3} = 12,3 \text{ or } 12$ groups of item.

Differential Item Function [DIF]

DIF is the similarity of opportunities for correct answers on items by respondents from different groups such as race, ethnicity, and Gender. The DIF in this study was analyzed by Gender, with the results presented in table 14.

PE	DIF	DI	PE	DIF	DI	DIF	JO		Welcł	1	Man	telH	ITE	
RS	MEA	F	RS	MEA	F	CON	IN				an	zl	Μ	
ON	SUR	S.	ON	SUR	S.	TRA	Т	t	d.f.	Pro	Pro	Siz	Nu	
CL	Е	Е	CL	Е	Е	ST	S.E			b.	b.	e	mbe	Na
ASS	_		ASS	_		~ -				~	~	•	r	me
I	77	17	D	87	17	11	24	11	/1	65	83	06	- 1	ITE
L	.//	.17	1	.07	.17	11	.24	44	41	.05	.05	.00	1	
_			_						0	87	27			MII
Р	.87	.17	L	.77	.17	.11	.24	.44	41	.65	.83	-	1	ITE
									0	87	27	.06		M 1
L	19	.15	Р	07	.15	12	.21	58	41	.56	.26	-	3	ITE
									0	34	63	.17		M3
Р	- 07	15	L	- 19	15	.12	.21	58	41	56	26	.17	3	ITE
•	.07		2	.17					0	34	.20	•••	5	M3
т	02	15	р	24	15	20	22		41	14	00		4	
L	.02	.15	P	.34	.15	32	.22	-	41	.14	.09	-	4	
								1.4	I	50	04	.40		M4
								6						
Р	.34	.15	L	.02	.15	.32	.22	1.4	41	.14	.09	.40	4	ITE
								6	1	50	04			M4
L	64	.15	Р	81	.15	.17	.21	.82	41	.41	.26	.17	5	ITE
-			-						2	51	e		U	M5
D	01	15	т	61	15	17	01	01	∠ 11	41	22		5	
r	81	.15	L	04	.15	1/	.21	82	41	.41	.20	-	5	11E
									2	51	22	- 17		M5

 Table 14: DIF Results by Gender

PE	DIF	DI	PE	DIF	DI	DIF	JO	,	Welch	ı	Man	telH	ITE	
RS	MEA	F	RS	MEA	F	CON	IN				an	zl	Μ	
ON	SUR	S.	ON	SUR	S.	TRA	Т	t	d.f.	Pro	Pro	Siz	Nu	
CL	E	Ε	CL	Ε	Ε	ST	S.E			b.	b.	e	mbe	Na
ASS			ASS										r	me
L	.29	.16	Р	.44	.15	15	.22	67	41	.50	.38	-	6	ITE
									1	26	37	.10		M6
Р	.44	.15	L	.29	.16	.15	.22	.67	41	.50	.38	.10	6	ITE
									1	26	37			M6
L	-1.17	.16	Р	-1.50	.16	.33	.22	1.4	41	.14	.15	.39	7	ITE
								7	0	14	56			M7
Р	-1.50	.16	L	-1.17	.16	33	.22	-	41	.14	.15	-	7	ITE
								1.4	0	14	56	.39		M7
								7						
L	1.25	.20	Р	1.25	.18	.00	.27	.00	41	1.0	.61	-	8	ITE
									0	00	50	.08		M8
Р	1.25	.18	L	1.25	.20	.00	.27	.00	41	1.0	.61	.08	8	ITE
									0	00	50			M8
L	-4.03	.39	Р	-5.94	1.0	1.91	1.0	1.7	35	.07	.08	.00	10	ITE
					0		8	8	4	67	06			M10
Р	-5.94	1.0	L	-4.03	.39	-1.91	1.0	-	35	.07	.08	.00	10	ITE
		0					8	1.7	4	67	06			M10
								8						
L	2.32	.28	Р	2.08	.24	.23	.37	.63	40	.52	.78	.05	11	ITE
									4	94	01			M11
Р	2.08	.24	L	2.32	.28	23	.37	63	40	.52	.78	-	11	ITE
									4	94	01	.05		M11
L	35	.15	Р	40	.15	.06	.21	.27	41	.78	.98	.13	12	ITE
									0	70	62			M12
Р	40	.15	L	35	.15	06	.21	27	41	.78	.98	-	12	ITE
									0	70	62	.13		M12
L	.71	.17	Р	.54	.16	.17	.23	.71	41	.47	.53	.12	13	ITE
									0	89	22			M13
Р	.54	.16	L	.71	.17	17	.23	71	41	.47	.53	-	13	ITE
									0	89	22	.12		M13
L	.35	.16	Р	.62	.16	27	.23	-	41	.23	.15	-	14	ITE
								1.1	2	48	62	.26		M14
								9						
Р	.62	.16	L	.35	.16	.27	.23	1.1	41	.23	.15	.26	14	ITE
								9	2	48	62			M14
L	.68	.17	Р	.85	.17	18	.24	74	41	.46	.24	_	15	ITE
									1	06	46	.09		M15
Р	.85	.17	L	.68	.17	.18	.24	.74	41	.46	.24	.09	15	ITE
									1	06	46			M15
L	48	.15	Р	16	.15	32	.21	-	41	.12	.29	-	16	ITE
								1.5	1	11	95	.31		M16

ISSN: 00333077

PE	DIF	DI	PE	DIF	DI	DIF	JO		Welch	1	Man	telH	ITE	
RS	MEA	F	RS	MEA	F	CON	IN				an	zl	Μ	
ON	SUR	S.	ON	SUR	S.	TRA	Т	t	d.f.	Pro	Pro	Siz	Nu	
CL	Ε	Ε	CL	Ε	Ε	ST	S.E			b.	b.	e	mbe	Na
ASS			ASS										r	me
								5						
Р	16	.15	L	48	.15	.32	.21	1.5	41	.12	.29	.31	16	ITE
								5	1	11	95			M16
L	.09	.16	Р	.33	.15	24	.22	-	41	270	.57	-	17	ITE
								1.1	0	5	68	.02		M17
_			_					0						
Р	.33	.15	L	.09	.16	.24	.22	1.1	41	270	.57	.02	17	ITE
			P	1.05	10	0.6	•	0	0	5	68	10	10	M17
L	1.41	.21	Р	1.35	.19	.06	.28	.22	40	.82	.42	.19	18	ITE
D	1.05	10	Ŧ	1 4 1	01	0.6	20	22	9	60	99		10	MI8
Р	1.35	.19	L	1.41	.21	06	.28	22	40	.82	.42	-	18	TTE M10
т	15	1.5	р	20	14	22	01	1 1	9	60 26	99 25	.19	10	M18
L	15	.15	Р	39	.14	.23	.21	1.1	41	.26	.35	.23	19	IIE M10
р	20	14	т	15	15	22	01	1	0	90	25 25		10	MI9
Р	39	.14	L	15	.15	23	.21	-	41	.26	.35	-	19	IIE M10
								1.1	0	90	55	.23		M19
т	2.24	10	D	2 16	21	22	20	1 70	41	12	61	11	20	ITE
L	-2.24	.19	Г	-2.40	.21	.22	.29	.70	41 2	.45	.01	.11	20	11E M20
D	2 46	21	T	2.24	10	22	20	78	ے 11	00 //3	40 61		20	NIZU ITE
Г	-2.40	.21	L	-2.24	.19	22	.29	/0	41 2	.45	.01	- 11	20	M20
T	69	17	P	1 18	18	- 49	25	_	2 40	00	40 06	.11	23	ITE
L	.07	.17	I	1.10	.10	+2	.23	19	ч0 9	.05	.00	68	23	M23
								6	,	00	15	.00		10125
Р	1.18	.18	L	.69	.17	.49	.25	1.9	40	.05	.06	.68	23	ITE
								6	9	08	75			M23
L	.14	.16	Р	.06	.15	.09	.22	.40	41	.68	.45	.17	24	ITE
									1	80	39			M24
Р	.06	.15	L	.14	.16	09	.22	40	41	.68	.45	-	24	ITE
									1	80	39	.17		M24
L	1.14	.19	Р	1.14	.18	.00	.26	.00	41	1.0	927	-	26	ITE
									0	00	2	.02		M26
Р	1.14	.18	L	1.14	.19	.00	.26	.00	41	1.0	927	.02	26	ITE
									0	00	2			M26
L	.12	.16	Р	02	.15	.14	.21	.64	41	.52	.69	.11	29	ITE
									0	32	47			M29
Р	02	.15	L	.12	.16	14	.21	64	41	.52	.69	-	29	ITE
									0	32	47	.11		M29
L	76	.15	Р	59	.15	17	.21	82	40	.41	.41	-	30	ITE
									5	23	03	.25		M30
Р	59	.15	L	76	.15	.17	.21	.82	40	.41	.41	.25	30	ITE

ISSN: 00333077

PE RS	DIF MEA	DI F	PE RS	DIF MEA	DI F	DIF CON	JO IN		Welc	h	Man an	telH zl	ITE M	
ON	SUR	S.	ON	SUR	S.	TRA	T	t	d.f.	Pro	Pro	Siz	Nu	
CL	Ε	E	CL	Ε	Ε	ST	S.E	-		b.	b.	e	mbe	Na
ASS			ASS										r	me
									5	23	03			M30
L	87	.15	Р	-1.19	.15	.31	.22	1.4	41	.14	.30	.36	32	ITE
								6	1	56	14			M32
Р	-1.19	.15	L	87	.15	31	.22	-	41	.14	.30	-	32	ITE
								1.4	1	56	14	.36		M32
								6						
L	.74	.17	Р	1.02	.17	29	.24	-	41	.23	.05	-	33	ITE
								1.1	2	84	25	.07		M33
D	1.00	17	Ŧ	74	17	20	2.4	8	4.1	22	05	07	22	
Р	1.02	.17	L	./4	.17	.29	.24	1.1	41	.23	.05	.07	33	IIE M22
т	07	15	D	11	15	10	21	8 96	2 41	84 20	25 25		24	M33 ITE
L	07	.15	P	.11	.15	18	.21	80	41	.39	.33	- 22	54	11E M24
D	11	15	T	- 07	15	18	21	86	0 41	12 30	20 35	.22	3/	M54 ITE
I	.11	.15	L	07	.15	.10	.21	.00	41 0	.57	.55	.22	J +	M34
L	36	16	Р	10	15	26	22	11	40	24	09	34	36	ITE
Ц	.50	.10	1	.10	.10	.20		7	9	.21	.07		50	M36
Р	.10	.15	L	.36	.16	26	.22	-	40	.24	.09	-	36	ITE
								1.1	9	17	11	.34		M36
								7						
L	.08	.16	Р	28	.14	.36	.21	1.6	40	.09	.17	.39	37	ITE
								9	8	24	69			M37
Р	28	.14	L	.08	.16	36	.21	-	40	.09	.17	-	37	ITE
								1.6	8	24	69	.39		M37
_			_					9					• •	
L	.15	.16	Р	.01	.15	.14	.22	.67	40	.50	.34	.17	38	ITE
D	01	1 -	Ŧ		1.6	1.4	22	< 7	7	60	09		20	M38
Р	.01	.15	L	.15	.16	14	.22	67	40 7	.50	.34	-	38	TTE M20
т	17	10	л	17	15	00	22	00	/	60 1.0	09	.17	40	M38
L	.1/	.10	Р	.1/	.15	.00	.22	.00	40 0	1.0	.87 24	.03	40	11E M40
D	17	15	T	17	16	00	$\gamma\gamma$	00	ש אר	1.0	24 87		40	IVI4U ITE
1	.1/	.15	L	.1/	.10	.00	.22	.00	40 Q	00	.07 24	-	40	M40
			Size	of Man	tel-Ha	enszel sl	ice [.] M	HSLIC	$\overline{TE} =$	010 100	$\frac{2+}{\text{pits}}$.05		101-10
			5120		114		100.171		· -	510108				

Based on table 14, it can be explained that all items have a Manthaenszel probability value exceeding 0.05, so all of the above items are not detected by DIF. So it can be concluded that the function of things in the male and female gender groups has the same position so that the opportunity to answer correctly on the person with the same ability as the male / female Gender is the same.

Discussions

Several Rasch Model assumptions must be met before analyzing item fit and person fit, unidimensional, local independence, and group invariance. Three assumptions in the Item Response Theory: unidimensional, local independence, parameter invariance and (Hambleton et al., 1991). Then Sumintono and Widhiarso (2015) also explained that the instrument development procedure using the Rasch Model approach consisted of several steps, namely: 1) verification of assumptions such as local unidimension and independence, 2) testing of item fit and person fit.

The item fit and person fit test results showed that there were 30 out of 40 articles and 415 out of 480 people with ZSTD Outfit values ranging from - 2.0 to 2.0, so 30 items and 415 people were under the Rasch Model. The criteria for determining qualified items and fit persons refer to the opinion of Boone et al. (2014), describes one of the requirements for checking right things and suitable persons is guided by the Outfit Z Standard (ZSTD) value with fit criteria if -2.0 <ZSTD <+2,0.

The unidimensional test showed the value of Raw Variance Explained by Empirical Measures was 24.6%, exceeding 20%, meaning that the unidimensional assumptions were fulfilled. So it can be concluded that the items only measure quantitative literacy abilities. According to Reckase (1979), the criteria for unidimensional testing explain that items have unidimensional standards if the test variant's value is $\geq 20\%$.

Furthermore, the results of local independence testing show the value of residual correlations is less than 0.20, so it meets local independence. This means that the answers between items and between people do not affect each other. The local independence testing criteria refer to Christensen et al. (2016), who explains that the object or person is detected locally if the residual correlation value is> 0.2.

The group invariance test shows that each item's average measure value always increases, meaning that the item meets the group invariance criteria. So it can be concluded that all groups of person abilities (high - low) invariably refer to the same grain's characteristic curve. Testing group invariance can be guided by an increase in accurate scores along with ability levels (Kang, et al, 2018).

The validity of Internal Structures

The validity of this study was determined through evidence of internal structure. Goodwin and Leech (2003) state that truth based on evidence of internal structure is the accuracy of the internal components of a test with a construct of measure. Then completed by Mardapi (2008), which states the construct validity refers to the extent to which the test measures the concept of a theory as the basis for preparing the test as evidenced by the internal structure of the test. The statistical analysis used to determine this validity is the item accuracy index defined through the infit and Outfit coefficients in Rasch modeling (Sumintono and Widhiarso, 2015).

Based on the study results, 30 items have valid internal structural criteria from 40 items developed. These items are spread over each quantitative literacy dimension, which is presented in table 15.

No	Dimension	Item Indicator	Item Number	Outfit ZSTD	Criteria
1	Interpretation	Interpreting graphical information	1	-0,5	Valid
		in solving problems	3	-1,5	Valid

Table 15: Distribution of Valid Items on Each Dimension

No	Dimension	Item Indicator	Item Number	Outfit ZSTD	Criteria
		Interpreting tabular information in	4	0,6	Valid
		solving problems	5	-1,8	Valid
			6	-0,1	Valid
2	Representation	Represent information to geometric	7	-1,0	Valid
		patterns	8	0,7	Valid
		Represent information to	10	-1,7	Valid
		mathematical models	11	0,1	Valid
		Represent information to diagrams,	12	-1,7	Valid
		graphs, or tables	13	0,7	Valid
3	Calculation	Use the calculation operations of	14	-0,5	Valid
		addition / subtraction in solving	15	-0,6	Valid
		mathematical problems	16	-0,9	Valid
		Using multiplication / division	17	1,2	Valid
		operations in solving mathematical	18	0	Valid
		problems	19	-1,3	Valid
		Using mixed count operations in	20	-0,9	Valid
		solving mathematical problems	23	0,2	Valid
4	Analysis	Analyzing information about story	24	1,7	Valid
		items in problem-solving,	26	-0,1	Valid
			29	0,4	Valid
			30	0	Valid
5	Assumption	Assumes results from story item	32	-0,8	Valid
		information	33	0,7	Valid
			34	-0,2	Valid
			36	1,7	Valid
6	Communication	Conceptual problem solving the	37	-1,1	Valid
		mathematical model	38	1,2	Valid
			40	0	Valid
Item	total		30		30

Table 15 shows that 30 items have a ZSTD Outfit value between - 2 to + 2, which means that all things have valid structural criteria. This is under Sumintono and Widhiarso (2015) opinion that the statistical analysis used to determine the validity of internal structures is the accuracy of the model item accuracy, selected through the infit and Outfit coefficients Rasch modeling. Then the criteria used to check its suitability are based on the Outfit Z Standard (ZSTD) with a fit value of -2.0 < ZSTD <+2.0 (Boone et al., 2014). Furthermore, the item also spreads, representing each dimension with the number of questions ≥ 3

per size. According to Neill (2011) opinion, the situation states that a domain of measurement contains at least three items. So it can be concluded that quantitative literacy instruments are feasible to use in terms of the internal structure's validity.

Instrument and Item Reliability

The instrument reliability in this study was determined through the internal consistency estimation method. The method is a way to assess the consistency of items by measuring once and requiring only one instrument, then calculating the reliability coefficient as a determinant of the reliability criteria (Urbina, 2004). The reliability coefficient used is the KR 20 reliability coefficient. The determination of the KR-20 reliability coefficient is based because quantitative literacy instruments produce dichotomous data. Therefore KR-20 is suitable for use. This is consistent with Naga's (2013) opinion, which explains that the reliability coefficient of Kuder Richardson was put forward in 1937, which applies to the dichotomous data.

Based on the results of the study, it can be seen that the KR-20 reliability coefficient value is 0.70, so the reliability of the instrument has excellent and acceptable criteria, which means that the interaction between 415 person and 30 items as a whole has excellent and proper standards. According to Naga (2013), instrument reliability criteria can be accepted if $0.7 \le KR-20$ reliability coefficient < 0.8. This was also reinforced by Sumintono and Widhiarso (2015), who explained that reliability was an excellent criterion if the reliability coefficient value was 0.7 to 0.8

The value of item reliability is 0.99, so item reliability has particular criteria, which means consistency of answers on 30 items has specific criteria. This is consistent with Fisher (2007) if the value of item reliability> 0.94 has a particular item consistency. While based on the separation value of 1.44, we obtained 12 groups of items. According to Fisher (2007), grouping items of more than five groups, indicating the quality of items with particular criteria.

Differential Item Function [DIF]

According to Dorans and Holland (1992), DIF refers to differences in the performance of items between two groups of comparable examinees. Based on the study results, DIF was determined through two different groups: male and female Gender. The results explain that 30 items have a Mantelhaenszel probability value of more than 0.05, so all the things above do not contain DIF. So it can be concluded that the performance of items on the same capable person from two different groups (male and female sexes) is the same.

Conclusion

Based on the results and discussion, it can be concluded that: 1) 30 items have valid criteria with Outfit ZSTD values between -2.0 to +2.0 on each item of the 40 items developed, 2) Instrument reliability has the right measures with a Cronbach Alpha (KR-20) value of 0.70, 3) Reliability 30 items have particular criteria with the value of item reliability of 0.99 with 12 groups of objects, 4) 30 articles are free from DIF, with the Mantelhaenszel probability value on each item more than 0.05.

Limitations and Future Studies

This research is still limited to the analysis of quantitative literacy items such as validity, reliability, and DIF analysis so that further research will be carried out to analyze quantitative literacy skills using these items.

Acknowledgment

Thanks are given to 1) elementary school students in the City of Semarang and Demak Regency, Indonesia as test subjects of quantitative literacy instruments for elementary school students; 2) Prof. Dr. Ani Rusilowati, M.Pd.; Prof. Sukestyarno, M.S., Ph.D.; Dr. Masrukan, M.Pd.; and Tri Suryaningsih, M.Pd. as an expert validator of quantitative literacy instruments for elementary school students.

References

- Bookman, J., Ganter, S. L., & Morgan, R. (2008). Developing assessment methodologies for quantitative literacy: A formative study. *The American Mathematical Monthly*, *115*(10), 911-929. https://doi.org/10.1080/00029890.2008.119 20609
- Boone, W. J., Staver, J. R., & Yale, M. S. (2013). *Rasch analysis in the human sciences*. Springer Science & Business Media.

- Burdette, A. M., & McLoughlin, K. (2010).
 Using census data in the classroom to increase quantitative literacy and promote critical sociological thinking. *Teaching Sociology*, *38*(3), 247-257. https://doi.org/10.1177/0092055X10370114
- [4] Christensen, K. B., Makransky, G., & Horton, M. (2017). Critical values for Yen's Q 3: Identification of local dependence in the Rasch model using residual correlations. *Applied psychological measurement*, 41(3), 178-194. https://doi.org/10.1177/0146621616677520
- [5] Cohen & Swerdlik. (2010). Psychological Testing and Assessment: An Introduction to Tests and Measurement 7th Edition. USA: McGraw-Hill Primis.
- [6] Crocker, L., & Algina, J., 2008. Introduction to Classical and Modern Test Theory. USA: Cengage Learning
- [7] Dorans, N. J., & Holland, P. W. (1992). DIF Detection and Description: Mantel-Haenszel and Standardization 1, 2. ETS Research Report Series, 1992(1), i-40. https://doi.org/10.1002/j.2333-8504.1992.tb01440.x
- [8] Field, A. P. (2005). *Discovering Statistics Using SPSS*. Sage Publications Inc.
- [9] Goodwin, L. D., & Leech, N. L. (2003). The meaning of validity in the new standards for educational and psychological testing: Implications for measurement courses. *Measurement and evaluation in Counseling and Development*, *36*(3), 181-191.
 https://doi.org/10.1080/07481756.2003.119

09741

- [10] Hallett, D. H. (2003). The role of mathematics courses in the development of quantitative literacy. *Quantitative Literacy: Why Numeracy Matters for School and Colleges*, 91-98.
- [11] Hambleton, R. K., Swaminathan, H., & Rogers, H. J. (1991). *Fundamentals of item response theory*. Sage.

- [12] Irawan, H. (2019). Masalah Kesetaraan Dalam Pendidikan Matematika. PAPATUNG: Jurnal Ilmu Administrasi Publik, Pemerintahan dan Politik, 2(1), 57-68.
- [13] Irianto, P. O., & Febrianti, L. Y. (2017, June). Pentingnya penguasaan literasi bagi generasi muda dalam menghadapi MEA. In *Proceedings Education and Language International Conference* (Vol. 1, No. 1).
- [14] Kang, H. A., Su, Y. H., & Chang, H. H.
 (2018). A note on monotonicity of item response functions for ordered polytomous item response theory models. *British Journal of Mathematical and Statistical Psychology*, 71(3), 523-535. https://doi.org/10.1111/bmsp.12131
- [15] De Lange, J. (2006). Mathematical literacy for living from OECD-PISA perspective.
- [16] Mardapi, D. (2008). Teknik penyusunan instrumen tes dan nontes. *Yogyakarta: Mitra Cendekia*, 127, 88.
- [17] Martony, O. (2019). The Influence of Balanced Nutrition Extension through Poster Media on the Improvement of Knowledge and Change Attitude. International Journal of Science and Society, 1(1), 98-106.
- [18] Mayes, R. L., Forrester, J., Christus, J. S., Peterson, F., & Walker, R. (2014). Quantitative reasoning learning progression: The matrix. *Numeracy: Advancing Education in Quantitative Literacy*, 7(2), 1-20.
- [19] McArthur D. L., 1987. Alternative Approaches to the Assessment of Achievement. Kluwer Academic Publishers
- [20] Naga, D. S. (2012). Teori sekor pada pengukuran mental. *Jakarta: PT Nagarani Citrayasa*
- [21] Neill, J., 2011. "Exploratory Factor Analysis Survey Research and Design Psikologi." Lecture Material. Centre or Applied Psychology University of Canberra.
- [22] OECD. (2018). *Pisa 2015 Result In Focus*. PISA: OECD Publishing

- [23] Ontario Education. (2014). Leading Math Success: Mathematical Literacy, Grades 7-12. The Final Report of the Expert Panel on Student Success in Ontario
- [24] Peraturan Menteri Pendidikan Nasional Nomor 22 Tahun 2006 Tentang Standar Isi Pendidikan Dasar dan Menengah. 2006. Jakarta: Lembaran Negara RI Nomor 4496.
- [25] Rafianti, I., Setiani, Y., & Novaliyosi, N. (2018). Profil kemampuan literasi kuantitatif calon guru matematika. JPPM (Jurnal Penelitian dan Pembelajaran Matematika), 11(1).
 http://dx.doi.org/10.30870/jppm.v11i1.2985
- [26] Reckase, M. D. (1979). Unifactor latent trait models applied to multifactor tests: Results and implications. *Journal of educational statistics*, 4(3), 207-230. https://doi.org/10.3102/1076998600400320 7
- [27] Schuhmann, P. W., McGoldrick, K., & Burrus, R. T. (2005). Student quantitative literacy: Importance, measurement, and correlation with economic literacy. *The American Economist*, 49(1), 49-65. https://doi.org/10.1177/0569434505049001 04
- [28] Steen, L. A. (2001). Mathematics And Democracy: The Case For Quantitative Literacy. USA: Woodrow Wilson National Fellowship Foundation
- [29] Sumintono, B., & Widhiarso, W. (2015). Aplikasi pemodelan rasch pada assessment pendidikan. Trim komunikata.
- [30] Suwarsono, St. (1987). Trait-Treatment Interaction dalam Pendidikan Matematika.
 Yogyakarta: IKIP Sanata Dharma Yogyakarta
- [31] Sweet, S., & Strand, K. (2006). Cultivating quantitative literacy: The role of sociology. *Teaching Sociology*, 34(1), 1-4. https://doi.org/10.1177/0092055X06034001 01

- [32] Urbina, S. (2014). Essentials of psychological testing. John Wiley & Sons.
- [33] Wijanto, S.H. 2008. Structural Equation Modeling dengan Lisrel 8.8. Yogyakarta: Graha Ilmu
- [34] Wilkins, J. L. (2010). Modeling quantitative literacy. *Educational and Psychological Measurement*, 70(2), 267-290. https://doi.org/10.1177/0013164409344506