NORDHAUS – GADDUM TYPE RESULTS FOR WIENER LIKE INDICES OF GRAPHS

¹R. BHUVANESHWARI, ²V. KALADEVI

¹Research Scholar (FT), PG and Research Department of Mathematics, Bishop Heber College, Trichy-620017, Tamil Nadu, India. Email id: bhuvi950066@gmail.com.

²Professor Emeritus, PG and Research Department of Mathematics, Bishop Heber College, Trichy-620017, Tamil Nadu, India. Email id: <u>kaladevi1956@gmail.com</u>.

ABSTRACT

A Nordhaus - Gaddum type result is a lower or upper bound on sum or product of a parameter of a graph and its complement. This concept was introduced in 1956 by Nordhaus E. A., Gaddum J. W. Generalized Wiener like indices such as wiener index, Detour index, Reciprocal- wiener index, Harary- wiener index, Hyper- wiener index, Reciprocal- Detour index, Harary- Detour index and Hyper- Detour index have been studied in graph theory. In this paper, Nordhaus – Gaddum type results of these indices for k-Sun graph and four regular graph are presented.

Keywords: Generalized Wiener like Polynomial, k-sun graph, Nordhaus – Gaddum results.

Introduction 1:

All graphs considered in this paper are finite, simple and connected. For a graph G = (V, E) with vertices $u, v \in V$, the distance between u and v in G, denoted by $d_G(u, v)$, is the length of a shortest (u, v) – path in G. The Wiener index [2,3,4] of G is defined as $W(G) = \frac{1}{2} \sum_{v \in V(G)} d_G(u, v)$ with the summation going

over all pairs of distinct vertices of G. The above definition can be further generalized in the following way:

$$W_{\lambda}(G) = \frac{1}{2} \sum_{u,v \in V(G)} d_G^{\lambda}(u,v)$$
 where $d_G^{\lambda}(u,v) = (d_G(u,v))^{\lambda}$ and λ is any real number.

For particular instances of the invariant λ , W_{-2} , W_{-1} and $\frac{1}{2}W_1 + \frac{1}{2}W_2$ are the so called Harary index [1], reciprocal Wiener index and hyper – wiener index(WW)[5,6].

The detour index of G is defined as $D(G) = \frac{1}{2} \sum_{u,v \in V(G)} D_G(u,v) \text{ with the summation going}$

over all pairs of distinct vertices of G. The above definition can be further generalized in the following way:

ISSN: 00333077

$$D_{\lambda}(G) = \frac{1}{2} \sum_{u,v \in V(G)} D_G^{\lambda}(u,v)$$
 where $D(u,v) = (D_G(u,v))^{\lambda}$ and λ is any real number.

For particular instances of the invariant λ , D_{-2} , D_{-1} and $\frac{1}{2}D_1 + \frac{1}{2}D_2$ are the so called Harary detour index, reciprocal detour index and hyper – detour index(WW). The complement of a graph G, denoted by \bar{G} is the graph with the same vertex set as G, where two vertices in G are adjacent if and only if they are not adjacent in G.

Definition 1.1:

A k – Sun graph ($k \ge 3$) is the graph on 2k vertices obtained from a clique $c_1, c_2, ... c_k$ on k vertices and an independent set on k vertices. Let $V(G) = \{c_1, c_2, ... c_k, s_1, s_2, ... s_k\}$ and $E(G) = \{s_i c_i, s_i c_{i+1} ; 1 \le i \le k\} \cup \{s_k c_k, s_k c_1\} \cup \{c_i c_j ; 1 \le i \le k, 1 \le j \le k, i < j\}$ be the vertex set and edge set of G respectively.

2.2. Generalized Wiener like indices of k – sun graph and its complement graph:

ISSN: 00333077

Let G be a k – sun graph. Then the generalized wiener polynomial, generalized detour polynomial

Theorem 2.2.1:

and the generalized circular polynomial are given by $W_{\lambda}P(G:x) = \left(\frac{k^2 + 3k}{2}\right)x^{1^{\lambda}} + (k^2 - k)x^{2^{\lambda}} + (\frac{k^2 - 3k}{2})x^{3^{\lambda}}$ $D_{\lambda}P(G:x) = (\frac{k^2 - 3k}{2})x^{(2k-3)^{\lambda}} + (k^2 - k)x^{(2k-2)^{\lambda}} + (\frac{k^2 + 3k}{2})x^{(2k-1)^{\lambda}}, and$ $C_{\lambda}P(G:x) = (\frac{k^2 - 3k}{2})x^{(2k-2)^{\lambda}} + kx^{(2k-1)^{\lambda}} + k^2x^{2k^{\lambda}} + kx^{(2k+1)^{\lambda}} + (\frac{k^2 - 3k}{2})x^{(2k+2)^{\lambda}},$

where $k \ge 4$ and λ is any real number.

Proof:

Let G be k – sun graph on 2k vertices, where $k \ge 4$ and λ is any real number.

Let $V(G) = \{c_1, c_2, \dots c_k, s_1, s_2, \dots s_k\}$ and $E(G) = \{s_i c_i, s_i c_{i+1} ; 1 \le i \le k\} \cup \{s_k c_k, s_k c_1\} \cup \{c_i c_j ; 1 \le i \le k, 1 \le j \le k, i < j\}$ be the vertex set and edge set of G respectively. The generalized Wiener like

polynomial of G is defined as, $W_{\lambda}P(G:x) = \sum_{u,v \in V(G)} x^{d^{\lambda}(u,v)}, \text{ for any real number } \lambda.$

For the k – sun graph, the generalized wiener polynomial, the generalized detour polynomial and generalized circular polynomial of k – sun graph G are,

$$W_{\lambda}P(G:x) = \sum_{1 \le i < j \le k} x^{d^{\lambda}(c_{i}c_{j})} + \sum_{1 \le i \le k} x^{d^{\lambda}(c_{i}s_{i})} + \sum_{1 \le i < j \le k} x^{d^{\lambda}(s_{i}s_{j})} - - - - (1)$$

$$D_{\lambda}P(G:x) = \sum_{1 \le i < j \le k} x^{D^{\lambda}(c_{i}c_{j})} + \sum_{1 \le i \le k} x^{D^{\lambda}(c_{i}s_{i})} + \sum_{1 \le i < j \le k} x^{D^{\lambda}(s_{i}s_{j})} - - - - (2)$$

$$C_{\lambda}P(G:x) = \sum_{1 \le i < j \le k} x^{C^{\lambda}(c_{i}c_{j})} + \sum_{1 \le i \le k} x^{C^{\lambda}(c_{i}s_{i})} + \sum_{1 \le i < j \le k} x^{C^{\lambda}(s_{i}s_{j})} - - - - (3)$$

The 4-sun graph and the wiener detour matrix are shown in **Figure 1.1** and **Figure 1.2** respectively. **Figure 1.3** shows the circular matrix of the 4 - Sun graph. The wiener-detour matrix and the circular

matrix gives the wiener polynomial, the detour polynomial and circular polynomial of the 4-s-un graph.

Figure 1.1 4-Sun Graph.

Figure 1.2 WDM(4-Sun graph)

Figure 1.3 CM(4-Sun graph)

$$W_{\lambda}P(G:x) = 14x^{1^{\lambda}} + 12x^{2^{\lambda}} + 2x^{3^{\lambda}}; D_{\lambda}P(G:x) = 2x^{5^{\lambda}} + 12x^{6^{\lambda}} + 14x^{7^{\lambda}}; C_{\lambda}P(G:x) = 2x^{6^{\lambda}} + 4x^{7^{\lambda}} + 16x^{8^{\lambda}} + 4x^{9^{\lambda}} + 2x^{10^{\lambda}}.$$

The 5-sun graph and the wiener detour matrix are shown in **Figure 1.4** and **Figure 1.5** respectively. **Figure 1.6** shows the circular matrix of the $5 - \sin \theta$ graph. The wiener-detour matrix and the circular

 c_{1} c_{2} c_{3} c_{4} c_{3} c_{3}

Figure 1.4 5-Sun Graph.

matrix gives the wiener polynomial, the detour polynomial and circular polynomial of the 5 – sun graph.

Figure 1.5 WDM(5-Sun graph)

Figure 1.6 CM(5-Sun graph)

 $W_{\lambda}P(G:x) = 20x^{1^{2}} + 20x^{2^{2}} + 5x^{3^{2}}; D_{\lambda}P(G:x) = 5x^{7^{2}} + 20x^{8^{2}} + 20x^{9^{2}}; C_{\lambda}P(G:x) = 5x^{8^{2}} + 5x^{9^{2}} + 25x^{10^{2}} + 5x^{11^{2}} + 5x^{12^{2}}.$ For k =6, the corresponding wiener polynomial, detour polynomial and polynomial of 6 – sun graph given below, $W_{\lambda}P(G:x) = 27x^{1^{2}} + 30x^{2^{2}} + 9x^{3^{2}}; D_{\lambda}P(G:x) = 9x^{9^{2}} + 30x^{10^{2}} + 27x^{11^{2}}; C_{\lambda}P(G:x) = 9x^{10^{2}} + 6x^{11^{2}} + 36x^{12^{2}} + 6x^{13^{2}} + 9x^{14^{2}}.$

For k = 7, the corresponding wiener polynomial, detour polynomial and polynomial of $7 - \sin$ graph given below,

$$W_{2}P(G:x) = 35x^{1^{2}} + 42x^{2^{2}} + 14x^{3^{2}}; D_{2}P(G:x) = 14x^{11^{2}} + 42x^{12^{2}} + 35x^{13^{2}}; C_{2}P(G:x) = 14x^{12^{2}} + 7x^{13^{2}} + 49x^{14^{2}} + 7x^{15^{2}} + 14x^{16^{2}}.$$

For k = 8, the corresponding wiener polynomial, detour polynomial and polynomial of 8 – sun graph given below,

$$W_{\lambda}P(G:x) = 44x^{1^{\lambda}} + 56x^{2^{\lambda}} + 20x^{3^{\lambda}}; D_{\lambda}P(G:x) = 20x^{13^{\lambda}} + 56x^{14^{\lambda}} + 44x^{15^{\lambda}}; C_{\lambda}P(G:x) = 20x^{14^{\lambda}} + 8x^{15^{\lambda}} + 64x^{16^{\lambda}} + 8x^{17^{\lambda}} + 20x^{18^{\lambda}}.$$

Hence in general, the generalized wiener polynomial, the detour polynomial and the generalized circular polynomial of k – sun graph G are given by,

$$W_{\lambda}P(G:x) = \left(\frac{k^2 + 3k}{2}\right)x^{1^{\lambda}} + (k^2 - k)x^{2^{\lambda}} + (\frac{k^2 - 3k}{2})x^{3^{\lambda}}$$

$$D_{\lambda}P(G:x) = (\frac{k^2 - 3k}{2})x^{(2k-3)^{\lambda}} + (k^2 - k)x^{(2k-2)^{\lambda}} + (\frac{k^2 + 3k}{2})x^{(2k-1)^{\lambda}}$$

$$C_{\lambda}P(G:x) = (\frac{k^2 - 3k}{2})x^{(2k-2)^{\lambda}} + kx^{(2k-1)^{\lambda}} + k^2x^{2k^{\lambda}} + kx^{(2k+1)^{\lambda}} + (\frac{k^2 - 3k}{2})x^{(2k+2)^{\lambda}}$$

Corollary 2.2.2:

Let G be a k-sun graph for $k \ge 4$. Then, the Wiener index $W_1(G) = 4k^2-5k$,

The Reciprocal-Wiener index $W_{-1}(G) = -[4k^2-5k]$, The Harary-Wiener index $W_{-2}(G) = -2[4k^2-5k]$, The Hyper-Wiener index WW(G) = $\frac{1}{2}[12k^2-15k]$.

Corollary 2.2.3:

Let G be a k- sun graph for $k \ge 4$. Then

The Detour index $D_1(G) = [4k^3 - 6k^2 + 5k]$, The Reciprocal Detour index $D_{-1}(G) = -[4k^3 - 6k^2 + 5k]$,

The Harary - Detour index $D_{-2}(G) = -2[4k^3 - 6k^2 + 5k]$, The Hyper - Detour index $DD(G) = \frac{1}{2}[12k^3 - 18k^2 + 15k]$.

Theorem 2.2.4:

Let \bar{G} be the complement of k – sun graph G. Then the generalized wiener polynomial and detour polynomial for \bar{G} are respectively given by:

$$W_{\lambda}P(G:x) = \frac{(3k^2 - 5k)}{2}x^{1^{\lambda}} + \frac{(k^2 + 3k)}{2}x^{2^{\lambda}}; D_{\lambda}P(G:x) =$$

Proof:

Let G be the k – sun graph on 2k vertices. Let \bar{G} be the complement of k – sun graph G. Figure 1.7. shows the complement graph \bar{G} of 5 – sun graph. The wiener detour matrix of the complement of 5 - Sungraph in **Figure 1.8.** gives the wiener polynomial and $W_{\lambda}P(G:x) = \frac{(3k^2 - 5k)}{2}x^{1^{\lambda}} + \frac{(k^2 + 3k)}{2}x^{2^{\lambda}}; D_{\lambda}P(G:x) = k(2k - 1)x^{(2k - 1)} x^{(2k - 1)} \text{ Figure } k \ge 5. \text{WDM[the complement of 5 - 5.6]}$ Sun graph]

ISSN: 00333077

Figure 1.7 \overline{G} (5 – sun graph)

Figure 1.8 WDM(\overline{G} (5 – sun graph))

$$W_{\lambda}P(\bar{G}:x) = 25x^{1^{\lambda}} + 20x^{2^{\lambda}}; D_{\lambda}P(\bar{G}:x) = 45x^{9^{\lambda}}$$

The wiener detour matrix of the complement of 6 – Sun graph in **Figure 1.9** gives the wiener polynomial and the detour polynomial of complement of 6 – sun graph.

Figure 1.9 WDM[the complement of 6 – Sun graph]

$$W_{\lambda}P(\bar{G}:x) = 39x^{1^{\lambda}} + 27x^{2^{\lambda}}; D_{\lambda}P(\bar{G}:x) = 66x^{11^{\lambda}}$$

For k = 7,8,9 the corresponding wiener polynomials and detour polynomial of the complement of $k - \sin g$ given below,

$$W_{\lambda}P(\bar{G}:x) = 56x^{1^{\lambda}} + 35x^{2^{\lambda}}; W_{\lambda}P(\bar{G}:x) = 76x^{1^{\lambda}} + 44x^{2^{\lambda}}; W_{\lambda}P(\bar{G}:x) = 90x^{1^{\lambda}} + 54x^{2^{\lambda}}$$

$$D_{\lambda}P(G:x) = 91x^{13^{\lambda}}; D_{\lambda}P(G:x) = 120x^{15^{\lambda}}; D_{\lambda}P(G:x) = 153x^{17^{\lambda}}$$

Hence in general, the generalized wiener and detour polynomial of complement of k – sun graph are respectively given by,

$$W_{\lambda}P(\bar{G}:x) = \frac{(3k^2 - 5k)}{2}x^{1^{\lambda}} + \frac{(k^2 + 3k)}{2}x^{2^{\lambda}}; D_{\lambda}P(\bar{G}:x) = k(2k - 1)x^{(2k - 1)^{\lambda}}, k \ge 5..$$

Corollary 2.2.5:

Let \bar{G} be the complement of k – sun graph G, then

The Wiener index
$$W_1(G) = \frac{1}{2}[5k^2 + k]$$
; The Reciprocalindex $W_{-1}(G) = -\frac{1}{2}[5k^2 + k]$;

The Harary - Wiener index $W_{-2}(G) = -\frac{1}{2}[10k^2 + 2k]$; The Hyper - Wiener index $WW(G) = \frac{1}{4}[15k^2 + 3k]$

Corollary 2.2.6:

Let \bar{G} be the complement of k – sun graph G, then

The Detour index
$$D_1(\bar{G}) = 4k^3 - 4k^2 + k$$
; The Reciprocal - Detour index $D_{-1}(\bar{G}) = -\left[4k^3 - 4k^2 + k\right]$. The Harary - Detour index $D_{-2}(\bar{G}) = -2\left[4k^3 - 4k^2 + k\right]$. The Hyper - Detour index $DD(\bar{G}) = \frac{\left[12k^3 - 12k^2 + 3k\right]}{2}$.

Result 2.2.7: Nordhaus – Gaddum Equations of k – sun graph.

$$(i)W_{1}(G) + W_{1}(G) = \frac{13k^{2} - 9k}{2}; (ii)W_{-1}(G) + W_{-1}(G) = -\left[\frac{13k^{2} - 9k}{2}\right]$$

$$(iii)W_{-2}(G) + W_{-2}(\bar{G}) = -[13k^2 - 9k](iv)WW(G) + WW(\bar{G}) = \frac{39k^2 - 27k}{4}$$

$$(v)D_1(G) + D_1(G) = [8k^3 - 10k^2 + 6k]; (vi)D_{-1}(G) + D_{-1}(G) = -[8k^3 - 10k^2 + 6k]$$

$$(vii)D_{-2}(G) + D_{-2}(G) = -2[8k^3 - 10k^2 + 6k]; (viii)DD(G) + DD(G) = \frac{24k^3 - 30k^2 + 18k}{2}$$

3.1. Nordhaus – Gaddum Equation for four regular graph:

In this section the generalized wiener polynomial and generalized detour polynomial of four regular graph and complement of four regular graph are presented and also Nordhaus – Gaddum equation for four regular graph is derived.

ISSN: 00333077

Algorithm for Four regular graph:

Input: the number of vertices n of a cyclic graph.

Output: the class four regular graph with 2n vertices.

Begin

Step 1: Take a cycle C_n with vertex set $V = \{v_1, v_2, ... v_n\}$ and e dge set $E = \{v_i v_{i+1} \cup v_n v_1: 1 \le i \le (n-1)\}$.

Step 2: For the edge v_iv_{i+1} , $1 \le i \le (n-1)$ introduce a new vertex u_i and create new edge v_iu_i and $v_{i-1}u_i$.

Step 3: For the edge v_nv_1 introduce a new vertex u_n and create new edges v_nu_n and v_1u_n .

Step 4: From the set of new vertices u_i , create new edges u_iu_{i+1} for $1 \le i \le (n-1)$ and an edge u_nu_1 .

Step 5: The new four regular graph $G(C_n)=(V,E)$ has the vertex set and edge set $V_G=\{\ v_1,v_2,\ldots v_n,\ u_1,\ u_2,\ldots u_n\ \}$

 $E_G = \{ \ u_i v_{i+1}, v_n v_1 \ , \ v_i u_i \ , \ v_{i+1} u_i \ , \ v_n u_n \ , \ v_1 u_n \ , \ u_i u_{i+1} \ , \ u_n u_1 \ / \ 1 \le i \le (n-1) \}.$

Generalized Wiener like indices of four regular graph and its complement:

Theorem 3.1.1:

Let $G(C_n)$ be a four regular graph. Then the generalized wiener polynomial and the generalized detour polynomial are given by the following expressions:

$$W_{\lambda}P(G:x) = 4nx^{1^{\lambda}} + 4nx^{2^{\lambda}} + \dots + 4nx^{(\frac{n-1}{2})^{\lambda}} + nx^{(\frac{n+1}{2})^{\lambda}}, \text{ when n is odd and n} \ge 3.$$

$$W_{\lambda}P(G:x) = 4nx^{1^{\lambda}} + 4nx^{2^{\lambda}} + \dots + 4nx^{(\frac{n-2}{2})^{\lambda}} + 3nx^{(\frac{n}{2})^{\lambda}}, \text{ when n is even and } n \ge 4.$$

$$D_{\lambda}P(G:x) = \frac{n(n-1)}{2}x^{(n-1)^{\lambda}}$$

Proof:

Let $G=G(C_n)$ be a four regular graph with 2n vertices. Let $V(G)=\{v_1,v_2,...v_n\}$ and edge set $E=\{u_iv_{i+1},v_nv_1,v_iu_i,v_{i+1}u_i,v_nu_n,v_1u_n,u_iu_{i+1},u_nu_1/1\leq i\leq (n-1)\}$.

Case(i): When n is odd.

Figure 1.10. shows the four regular graph $G(C_3)$ and **Figure 1.11.** gives the wiener polynomial and the detour polynomial of four regular graph $G(C_3)$.

Figure 1.10 G(C₃)

	V1	V2	V3	\mathbf{u}_1	\mathbf{u}_2	u3
V1	(0	5	5	5	5	5
V2	1	0	5	5	5	5
V3	1	1	0	5	5	5
\mathbf{u}_1	1	1	2	0	5	5
\mathbf{u}_2	2	1	1	1	0	5
u3	1	2	1	1	1	0)

Figure 1.11.WDM $[G(C_3)]$

$$W_{\lambda}P(G:x) = 12x^{1^{\lambda}} + 3x^{2^{\lambda}}; D_{\lambda}P(G:x) = 15x^{5^{\lambda}}$$

Figure 1.12. shows the four regular graph $G(C_5)$ and **Figure 1.13.** gives the wiener polynomial and the detour polynomial of four regular graph $G(C_5)$.

Figure 1.12 G(C₅)

	V1	V2	V3	V4	V5	\mathbf{u}_1	\mathbf{u}_2	u ₃	u 4	u 5
V1	(0	9	9	9	9	9	9	9	9	9\
V2	1	0	9	9	9	9	9	9	9	9
V3	2	1	0	9	9	9	9	9	9	9
V4	2	2	1	0	9	9	9	9	9	9
V5	1	2	2	1	0	9	9	9	9	9
u ₁	1	1	2	3	2	0	9	9	9	9
\mathbf{u}_2	2	1	1	2	3	1	0	9	9	9
u3	3	2	1	1	2	2	1	0	9	9
u 4	2	3	2	1	1	2	2	1	0	9
u5	1	2	3	2	1	1	2	2	1	0)

Figure 1.13.WDM $[G(C_5)]$

$$W_{\lambda}P(G:x) = 20x^{1^{\lambda}} + 20x^{2^{\lambda}} + 5x^{3^{\lambda}}; D_{\lambda}P(G:x) = 45x^{9^{\lambda}}.$$

Hence in general, the generalized wiener polynomial of four regular graph G(C_n) is,

$$W_{\lambda}P(G:x) = 4nx^{1^{\lambda}} + 4nx^{2^{\lambda}} + \dots + 4nx^{(\frac{n-1}{2})^{\lambda}} + nx^{(\frac{n+1}{2})^{\lambda}}$$
, when n is odd and $n \ge 3$.

Case (ii): When n is even.

Figure 1.14. shows the four regular graph $G(C_4)$ and **Figure 1.15.** gives the wiener polynomial and the detour polynomial of four regular graph $G(C_4)$.

Figure 1.14. G(C₄)

Figure 1.15.WM $[G(C_4)]$

$$W_{\lambda}P(G:x) = 16x^{1^{\lambda}} + 12x^{2^{\lambda}}; D_{\lambda}P(G:x) = 28x^{7^{\lambda}}.$$

Hence in general, the generalized wiener polynomial of four regular graph $G(C_n)$ is $W_{\lambda}P(G:x) = 4nx^{1^{\lambda}} + 4nx^{2^{\lambda}} + + 4nx^{(\frac{n-1}{2})^{\lambda}} + nx^{(\frac{n+1}{2})^{\lambda}}$, when n is odd and $n \ge 3$.

 $W_{\lambda}P(G:x) = 4nx^{1^{\lambda}} + 4nx^{2^{\lambda}} + \dots + 4nx^{(\frac{n-2}{2})^{\lambda}} + 3nx^{(\frac{n}{2})^{\lambda}}$, when n is even and $n \ge 4$. and the generalized detour polynomial of four regular graph $G(C_n)$ is,

$$D_{\lambda}P(G:x) = \frac{n(n-1)}{2}x^{(n-1)^{\lambda}}$$

Corollary 3.1.2:

Let G be the four regular graph. Then

The Wiener index $W_1(G) = \frac{n^2(n+1)}{2}$; The Reciprocal - Wiener index $W_{-1}(G) = -\left[\frac{n^2(n+1)}{2}\right]$;

The Harary - Wiener index $W_{-2}(G) = -\left[\frac{n^2(2n+2)}{2}\right]$; The Hyper - Wiener index $WW(G) = \left[\frac{3n^2(n+1)}{4}\right]$.

Corollary 3.1.3:

Let G be the four regular graph, then

The Detour index $D_1(G) = \frac{n(n-1)^2}{2}$; The Reciprocal index $D_{-1}(G) = -\left[\frac{n(n-1)^2}{2}\right]$,

The Harary- Detour index $D_{-2}(G) = -2\left[\frac{n(n-1)^2}{2}\right]$;

The Hyper-Detour index
$$DD(G) = \left[\frac{3n(n-1)^2}{4}\right]$$
.

Theorem 3.1.4:

Let \bar{G} be the complement of four regular graph G. Then the generalized wiener polynomial and detour polynomial for \bar{G} are respectively given by:

$$W_{\lambda}P(G:x) = (2n^2 - 5n)x^{1^{\lambda}} + 4nx^{2^{\lambda}}; D_{\lambda}P(G:x) = (2n^2 - n)x^{(2n-1)^{\lambda}}.$$

Proof:

Let G be the four regular graph and \bar{G} be the complement of G. **Figure 1.16.** shows the complement graph \bar{G} of four regular graph $G(C_4)$. The wiener detour matrix **Figure 1.17.** gives the wiener polynomial and the detour polynomial of complement of four regular graph $G(C_4)$.

Figure 1.16. \overline{G} of four regular graph $G(C_4)$

Figure 1.17.WDM[\overline{G} (C₄)]

$$W_{\lambda}P(\bar{G}:x) = 12x^{1^{\lambda}} + 16x^{2^{\lambda}}; D_{\lambda}P(\bar{G}:x) = 28x^{7^{\lambda}}.$$

In similar mannar, when k = 5, 6,7,8., the corresponding wiener polynomials of complement graph \bar{G} of four regular graph given below,

$$W_{\lambda}P(\bar{G}:x) = 25x^{1^{\lambda}} + 20x^{2^{\lambda}}; W_{\lambda}P(\bar{G}:x) = 42x^{1^{\lambda}} + 24x^{2^{\lambda}}; W_{\lambda}P(\bar{G}:x) = 63x^{1^{\lambda}} + 28x^{2^{\lambda}}; W_{\lambda}P(\bar{G}:x) = 88x^{1^{\lambda}} + 32x^{2^{\lambda}}$$

Hence in general, the generalized wiener polynomial of complement of four regular graph,

$$W_1P(G:x) = (2n^2 - 5n)x^{1^{\lambda}} + 4nx^{2^{\lambda}}$$

In similar mannar, when k =5,6,7,8, the corresponding generalized detour polynomials of complement graph \bar{G} of four regular graph given below,

$$D_{\lambda}P(\bar{G}:x) = 45x^{9^{\lambda}}; D_{\lambda}P(\bar{G}:x) = 66x^{11^{\lambda}}; D_{\lambda}P(\bar{G}:x) = 91x^{13^{\lambda}}; D_{\lambda}P(\bar{G}:x) = 120x^{15^{\lambda}}$$

Hence in general, the generalized detour polynomial of complement of four regular graph is.

$$D_{\lambda}P(G:x) = (2n^2 - n)x^{(2n-1)^{\lambda}}$$
.

Corollary 3.1.5:

Let \bar{G} be the complement of G. Then

The Wiener index $W_1(G) = [2n^2 + 3n]$; The Reciprocal index $W_{-1}(G) = -[2n^2 + 3n]$;

The Harary - Wiener index $W_{-2}(\bar{G}) = -2[2n^2 + 3n]$; The Hyper - Wiener index $WW(\bar{G}) = \frac{1}{2}[6n^2 + 9n]$

Corollary 3.1.6:

Let \bar{G} be the complement of G. Then

The Detour index $D_1(\bar{G}) = 4n^3 - 4n^2 + n$; The Reciprocal - Wiener index $D_{-1}(\bar{G}) = -\left[4n^3 - 4n^2 + n\right]$;

The Harary - Detour index $D_{-2}(\bar{G}) = -2\left[4n^3 - 4n^2 + n\right]$; The Hyper - Detour index $DD(\bar{G}) = \frac{12n^3 - 12n^2 + 3n}{2}$.

Result 3.1.7: Nordhaus – Gaddum Equations of four regular graph.

$$(i)W_1(G) + W_1(G) = \frac{n^3 + 5n^2 + 6n}{2}; (ii)W_{-1}(G) + W_{-1}(G) = -\left[\frac{n^3 + 5n^2 + 6n}{2}\right]$$

$$(iii)W_{-2}(G) + W_{-2}(\bar{G}) = -[n^3 + 5n^2 + 6n](iv)WW(G) + WW(\bar{G}) = \frac{3n^3 + 15n^2 + 18n}{4}$$

$$(v)D_{1}(\bar{G}) + D_{1}(\bar{G}) = \frac{9n^{3} - 10n^{2} + 3n}{2}; (vi)D_{-1}(\bar{G}) + D_{-1}(\bar{G}) = -\left[\frac{9n^{3} - 10n^{2} + 3n}{2}\right];$$

$$(vii)D_{-2}(\bar{G}) + D_{-2}(\bar{G}) = -[9n^3 - 10n^2 + 3n](viii)DD(\bar{G}) + DD(\bar{G}) = \frac{27n^3 - 30n^2 + 9n}{4}.$$

Conclusions:

In 1956, Nordhaus E. A., Gaddum J. W. [7] introduced the bounds involving the chromatic number $\chi(G)$ of a graph G and its complement. Many authors studied [8, 9] Nordhaus-Gaddum bounds for domination number, connected domination number, total domination number and also there has been many publications on Nordhaus-Gaddum type

results for indices like Gutman wiener index, Steiner index, Krichhoff index. This paper deals with Nordhaus — Gaddum equations for wiener like indices to k — sun graph four regular graph.

ISSN: 00333077

References:

- [1] Diudea M. V., Indices of reciprocal properties on Harary indices, J. Chem.Inf. Comput. Sci. 37(1997), pp:292-299.
- [2] Gutman I., A property of the Wiener number and its modifications, Indian J. Chem., 36A(1997), pp:128-132.
- [3] Gutman I., Dobrynin A.A., Klavzar S., Pavlovic L., Wiener type invariants of tree and their relation, Bull Inst. Combin. Appl. 40(2004), pp:23-30.
- [4] Joshi A., Baskar babujee J., Wiener Polynomial for Graphs with Cycle, Proceedings of the International Conference on Mathematics and Computer Science, (2008) pp:119-125
- [5] Klavzar S., Zigert P., Gutman I., An algorithm for the calculation of the hyper Wiener index of benzenoid hydrocarbons, Compt. Chem. 24(2000), pp:229-233
- [6] Lukovits I., A note on a formula for the hyperWiener of some trees, J. Chem. Inf. Comput. Sci. 34(1994), pp:1079-1081.
- [7] Nordhaus E. A., Gaddum J.W., On complementary graphs, Amer. Math. Monthly 63(1956), pp: 175-177.
- [8] Payan C., Xuong N. H., Domination-balanced graphs, J. Graph Theory 6 (1982), pp: 23-32.
- [9] Plesnik J., Bounds on chromatic numbers of multiple factors of complete graph, J. Graph Theory 2 (1978), pp: 9-17.