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ABSTRACT 

A Nordhaus - Gaddum type result is a lower or upper bound on sum or product of a parameter of a graph and its complement. This 

concept was introduced in 1956 by Nordhaus E. A.,             Gaddum J. W. Generalized Wiener like indices such as wiener index, Detour 

index, Reciprocal- wiener index, Harary- wiener index, Hyper- wiener index, Reciprocal- Detour index, Harary- Detour index and 

Hyper- Detour index have been studied in graph theory. In this paper, Nordhaus – Gaddum type results of these indices for k-Sun graph 

and four regular graph are presented. 
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Introduction 1: 

All graphs considered in this paper are finite, simple 

and connected. For a graph G = (V, E) with vertices 

u, v ∈ V, the distance between u and v in G, denoted 

by dG(u, v), is the length of a shortest (u, v) – path in 

G. The Wiener index [2,3,4] of G is defined as 




=
)(,

),(
2

1
)(

GVvu

G vudGW with the summation going 

over all pairs of distinct vertices of G. The above 

definition can be further generalized in the following 

way: 

𝑊𝜆(G)=
1

2
∑ 𝑑𝐺

𝜆(𝑢, 𝑣)𝑢,𝑣∈𝑉(𝐺)  where 

 𝑑𝐺
𝜆(𝑢, 𝑣) = (𝑑𝐺(𝑢, 𝑣))

𝜆  

and 𝜆 is any real number. 

 

For particular instances of the invariant 𝜆, 𝑊−2, 𝑊−1 

and 
1

2
 𝑊1 + 

1

2
 𝑊2  are the so called Harary index [1], 

reciprocal Wiener index and hyper – wiener 

index(WW)[5,6]. 

The detour index of G is defined as 




=
)(,

),(
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1
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GVvu

G vuDGD with the summation going 

over all pairs of distinct vertices of G. The above 

definition can be further generalized in the following 

way: 

𝐷𝜆(G)=
1

2
∑ 𝐷𝐺

𝜆(𝑢, 𝑣)𝑢,𝑣∈𝑉(𝐺)  where 𝐷(𝑢, 𝑣) = 

(𝐷𝐺(𝑢, 𝑣))
𝜆 and 𝜆 is any real number. 

For particular instances of the invariant 𝜆, 𝐷−2, 𝐷−1 

and 
1

2
 𝐷1 + 

1

2
 𝐷2 are the so called Harary detour index, 

reciprocal detour index and hyper – detour 

index(WW). The complement of a graph G, denoted 

by 𝐺̅ is the graph with the same vertex set as G, 

where two vertices in G are adjacent if and only if 

they are not adjacent in G.  

Definition 1.1: 

A k – Sun graph (k≥3) is the graph on 2k vertices 

obtained from a clique c1, c2, …ck on k vertices and 

an independent set on k vertices. Let V(G) = { c1, c2, 

…ck, s1,s2,…sk} and E(G) = {sici, sici+1 ; 1≤i ≤ k} ∪ 

{ skck, skc1} ∪ {cicj ; 1≤i ≤ k, 1≤j ≤ k, i<j} be the 

vertex set and edge set of G respectively. 

2.2. Generalized Wiener like indices of k – sun 

graph and its complement graph: 
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Theorem 2.2.1: Let G be a k – sun graph. Then the generalized 

wiener polynomial, generalized detour polynomial 

and the generalized circular polynomial are given by 
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where k≥4 and 𝜆 is any real number. 

 

Proof: 

Let G be k – sun graph on 2k vertices, where k≥4 

and 𝜆 is any real number.  

Let V(G) = { c1, c2, …ck, s1,s2,…sk} and E(G) = {sici, 

sici+1 ; 1≤i ≤ k} ∪ { skck, skc1} ∪ {cicj ; 1≤i ≤ k, 1≤j 

≤ k, i<j} be the vertex set and edge set of G 

respectively. The generalized Wiener like 

polynomial of G is defined as, 
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  for any real number 𝜆.  

For the k – sun graph, the generalized wiener 

polynomial, the generalized detour polynomial and 

generalized circular polynomial of k – sun graph G 

are, 
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The 4-sun graph and the wiener detour matrix are 

shown in Figure 1.1 and Figure 1.2 respectively. 

Figure 1.3 shows the circular matrix of the 4 – Sun 

graph. The wiener-detour matrix and the circular 

matrix gives the wiener polynomial, the detour 

polynomial and circular polynomial of the 4 – s-un 

graph. 
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Figure 1.1 4-Sun Graph.  
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Figure 1.2 WDM(4-Sun graph) 

 
Figure 1.3 CM(4-Sun graph) 
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The 5-sun graph and the wiener detour matrix are 

shown in Figure 1.4 and Figure 1.5 respectively. 

Figure 1.6 shows the circular matrix of the 5 – sun 

graph. The wiener-detour matrix and the circular 

matrix gives the wiener polynomial, the detour 

polynomial and circular polynomial of the 5 – sun 

graph. 

 
Figure 1.4 5-Sun Graph.  
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Figure 1.5 WDM(5-Sun graph) 
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Figure 1.6 CM(5-Sun graph) 

.x5x5x25x5x5 ):(;20xx205x ):(;5x20x20x):( 12111098987321 

 ++++=++=++= xGPCxGPDxGPW For k =6, the 

corresponding wiener polynomial, detour polynomial and polynomial of 6 – sun graph given below, 
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For k =7, the corresponding wiener polynomial, detour polynomial and polynomial of 7 – sun graph given below, 
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For k =8, the corresponding wiener polynomial, detour polynomial and polynomial of 8 – sun graph given below, 
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Hence in general, the generalized wiener polynomial, the detour polynomial and the generalized circular 

polynomial of k – sun graph G are given by, 
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Corollary 2.2.2: 

Let G be a k-sun graph for k≥4. Then, the Wiener 

index W1(G) = 4k2-5k,  

The Reciprocal-Wiener index W-1(G) =-[4k2-5k], 

The Harary-Wiener index W-2(G) =-2[4k2-5k],  

The Hyper-Wiener index WW(G) =  
1

2
[12k2-15k]. 

Corollary 2.2.3: 

Let G be a k- sun graph for k≥4. Then  
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Theorem 2.2.4: 

Let 𝐺̅ be the complement of k – sun graph G. Then 

the generalized wiener polynomial and detour 

polynomial for 𝐺̅ are respectively given by: 
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Proof: 

Let G be the k – sun graph on 2k vertices. Let 𝐺̅ be 

the complement of k – sun graph G. Figure 1.7. 

shows the complement graph 𝐺̅ of 5 – sun graph. The 

wiener detour matrix of the complement of 5 – Sun 

graph in Figure 1.8. gives the wiener polynomial and 

the detour polynomial of complement of 5 – sun 

graph. Figure 1.8.WDM[the complement of 5 – 

Sun graph]

 

 

Figure 1.7 𝑮̅ (5 – sun graph) 

Figure 1.8 WDM(𝑮̅ (5 – sun graph)) 
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
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−

;
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
945):( xxGPD =

−

 

The wiener detour matrix of the complement of 6 – Sun graph in Figure 1.9 gives the wiener polynomial and the 

detour polynomial of complement of 6 – sun graph. 
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Figure 1.9 WDM[the complement of 6 – Sun graph] 
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For k =7,8,9 the corresponding wiener polynomials and detour polynomial of the complement of k – sun graph 

given below, 
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Hence in general, the generalized wiener and detour polynomial of complement of k – sun graph are respectively 

given by, 
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Corollary 2.2.5: 

Let 𝐺̅ be the complement of k – sun graph G, then 
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Corollary 2.2.6: 

Let 𝐺̅ be the complement of k – sun graph G, then 
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Result 2.2.7: Nordhaus – Gaddum Equations of k – sun graph. 
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3.1. Nordhaus – Gaddum Equation for four regular graph: 

In this section the generalized wiener polynomial and generalized detour polynomial of four regular graph and 

complement of four regular graph are presented and also Nordhaus – Gaddum equation for four regular graph is 

derived.  

Algorithm for Four regular graph: 

Input : the number of vertices n of a cyclic graph. 

Output : the class four regular graph  with  2n vertices. 

Begin 

Step 1: Take a cycle Cn with vertex set V = {v1, v2,…vn} and e dge set E = {vivi+1 ∪ vnv1:   

            1≤i≤(n-1)}. 

Step 2: For the edge vivi+1, 1≤i≤(n-1) introduce a new vertex ui and create new edge viui and   

            vi-1ui. 

Step 3: For the edge vnv1 introduce a new vertex un and create new edges vnun and v1un. 

Step 4: From the set of new vertices ui, create new edges uiui+1 for 1≤i≤(n-1) and an edge unu1. 

Step 5: The new four regular graph G(Cn) = (V, E) has the vertex set and edge set  

            VG = { v1,v2,…vn, u1, u2,…un }  

             EG = { uivi+1,vnv1 , viui , vi+1ui , vnun , v1un , uiui+1 , unu1 / 1≤i≤(n-1)}. 

Generalized Wiener like indices of four regular graph and its complement: 

Theorem 3.1.1: 

Let G(Cn) be a four regular graph. Then the generalized wiener polynomial and the generalized detour polynomial  

are given by the following expressions: 
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):( −−
= nx

nn
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Proof: 

Let G= G(Cn) be a four regular graph with 2n vertices. Let V(G) ={v1, v2,…vn}and edge set  

E = { uivi+1,vnv1 , viui , vi+1ui , vnun , v1un , uiui+1 , unu1 / 1≤i≤(n-1)}. 

Case(i): When n is odd. 
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Figure 1.10. shows the four regular graph G(C3) and Figure 1.11. gives the wiener polynomial and the detour 

polynomial of four regular graph G(C3). 

 
Figure 1.10 G(C3) 

 
Figure 1.11.WDM[G(C3)] 
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Figure 1.12. shows the four regular graph G(C5) and Figure 1.13. gives the wiener polynomial and the detour 

polynomial of four regular graph G(C5). 

 
Figure 1.12 G(C5) 

 
Figure 1.13.WDM[G(C5)] 
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Hence in general, the generalized wiener polynomial of four regular graph G(Cn) is, 
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Case (ii): When n is even. 

Figure 1.14. shows the four regular graph G(C4) and Figure 1.15. gives the wiener polynomial and the detour 

polynomial of four regular graph G(C4). 
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Figure 1.14. G(C4) 

 
Figure 1.15.WM[G(C4)] 
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Hence in general, the generalized wiener polynomial of four regular graph G(Cn) is
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and the generalized detour polynomial of four regular graph G(Cn) is, 
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Corollary 3.1.2: 

Let G be the four regular graph. Then 
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Corollary 3.1.3: 

Let G be the four regular graph, then 
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The Hyper-Detour index .
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Theorem 3.1.4: 

Let 𝐺̅ be the complement of four regular graph G. Then the generalized wiener polynomial and detour polynomial 

for 𝐺̅ are respectively given by: 
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Proof: 

Let G be the four regular graph and 𝐺̅ be the complement of G. Figure 1.16. shows the complement graph 𝐺̅ of 

four regular graph G(C4). The wiener detour matrix Figure 1.17. gives the wiener polynomial and the detour 

polynomial of complement of four regular graph G(C4). 

 

Figure 1.16. 𝑮̅ of four regular graph G(C4) 

 

Figure 1.17.WDM[𝑮̅ (C4)] 
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In similar mannar, when k =5, 6,7,8., the corresponding wiener polynomials of complement graph 𝐺̅ of four 

regular graph given below,
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Hence in general, the generalized wiener polynomial of complement of four regular graph, 




212 4)52():( nxxnnxGPW +−=
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In similar mannar, when k =5,6,7,8, the corresponding generalized detour polynomials of complement graph 𝐺̅ 

of four regular graph given below,
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Hence in general, the generalized detour polynomial of complement of four regular graph is. 
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Corollary 3.1.5: 

Let 𝐺̅ be the complement of G. Then 
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Corollary 3.1.6: 

Let 𝐺̅ be the complement of G. Then 
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Result 3.1.7: Nordhaus – Gaddum Equations of four regular graph. 
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Conclusions: 

In 1956, Nordhaus E. A., Gaddum J. W. [7] 

introduced the bounds involving the chromatic 

number 𝜒(G) of a graph G and its complement. Many 

authors studied [8, 9] Nordhaus-Gaddum bounds for 

domination number, connected domination number, 

total domination number and also there has been 

many publications on Nordhaus-Gaddum type 

results for indices like Gutman wiener index, Steiner 

index, Krichhoff index. This paper deals with 

Nordhaus – Gaddum equations for wiener like 

indices to k – sun graph four regular graph. 
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