
PSYCHOLOGY AND EDUCATION (2021) 58(2): 4070-4074 ISSN: 00333077

4070

www.psychologyandeducation.net

A Multipurpose E-commerce System Using Haversine formula and A*

Algorithm

Emad Sa’adeh1*, Bara Barham2, Osama Odeh3

1,2,3 An-Najah National University, Computerized Information System Department

Email: 1*esaadeh@najah.edu, 2baraheyl@gmail.com

ABSTRACT

In this paper we provide the design and implementation of a web-based real-time interactive e-commerce system. Besides the

ordinary features of currently working e-commerce systems in the market, we fully implement three advanced features in our new

system. The first feature provides customers with the ability to access products of all stores within a specific area surrounding

them, implemented by using a customized Haversine Formula. The second feature fetches the shortest path between the store’s
location and the customer's location, implemented by using a customized A* algorithm. The last feature implemented by an

enhanced observer design pattern gives customers the ability to watch product price modifications according to their individual

criteria. All the customized algorithms used in the system are fully evaluated and tested. Different technologies are used to

implement our system like ReactJS, NodeJS, Socket.Io , Firebase , and Google API. The complete code is available on the GitHub

code hosting website.

Keywords

shortest path, haversine formula, observer pattern

Article Received: 10 August 2020, Revised: 25 October 2020, Accepted: 18 November 2020

Introduction

The world of e-commerce is interesting, as it is

constantly growing to meet customer needs. It has

many benefits such as locating the product

quicker, eliminate travel time and cost, provide

comparison shopping, and so on. Although these

benefits are significant for online shopping

consumers, sometimes people need something that

works faster to access products in their area that is

close to their location. Our system not designed

for a specific store or a specific company, it is a

global system that can include open-numbers of

stores. This gives an additional feature to the

customer to compare between the different stores

and choose the suitable one.

 We design our system to access all the registered

stores in the customer’s area within a specified

distance. Using google maps API and a

customized A* algorithm, the system can fetch the

shortest path between customer and store which

makes it easier for the delivery service to

complete their job easily. The paper will show

how the Haversine formula is used and

customized to achieve such functionality.

 Our system gathers all the stores available in a

customer’s area using google maps API, so

customers can do shopping while they are at their

home with no need to go to crowded places which

is beneficial for conditions like COVID-19. The

system can fetch the customer location

automatically via the google maps API, send it to

the chosen store, and then to the delivery company

as soon as the store approves the customer order.

Besides the above features, our system gives the

ability for customers to watch the products they

want. When the price of a product goes down to a

certain value specified previously by a customer,

then that customer will be notified immediately.

Note that–up to our knowledge–the watching

features implemented in the current e-commerce

systems do not allow customers to specify any

criteria on watching. This means that when any

changes to the price done on that product, all the

customers on the watching list will be notified.

The major drawback of this approach is that the

customer may interest in the product when it is

below a certain value and not interested in all

other modifications done above that value. Also,

sending notifications on any price modification

may disturb customers. Finally, this for sure will

increase the overhead on the system.

System architecture

The architecture of the main components of our

system is displayed in Figure 1. It is a

client/server architecture comprising the client-

side and the server-side. The server side

PSYCHOLOGY AND EDUCATION (2021) 58(2): 4070-4074 ISSN: 00333077

4071

www.psychologyandeducation.net

comprises the customer, merchant, and admin

modules. The client-side comprises a web-based

user interface that can support three kinds of

actors: customer, merchant, and admin actors.

Figure 1. System architecture

A. The Client-Side

The client-side provides an entry point for

customers and merchants through a web browser.

The system provides customers with many

functions that can be accessed through the client-

side (web browsers). For example, the customer

can search, book, buy, rate, and watch products

inside all the stores registered in the system. A

powerful search engine with many search options

is implemented inside the system. One of the

search criteria is to search for stores that are

closest to the customer’s location. So the system

may be used as a navigation tool if the customer

'for instance' suggested eating in the nearest

restaurant, for example.

Merchants also have many functions inside the

system. After registering and having accounts on

the system. They can add, review, search for their

products, change product prices, printing many

kinds of reports. Merchants can also check the

orders they received and checked the path from

the store to the customers.

B. The Server-Side

The server side acts as a mediator between the

actors and the system and between the actors

themselves. To accomplish these tasks, the server

uses several modules as shown in Figure 1.

Customer Module

The major task of this module is to manage the

interaction between the system and the customers.

The module has access to the database of the

system. Provides customers with the ability to

shop easily after automatically extracting their

locations.

Merchant Module

The major task of this module is to manage the

interaction between the system and the merchants.

The module has access to the database of the

system. Provides merchants with the ability to

manage their products easily and efficiently.

Admin Module

The major task of this module is to manage all the

merchants’ accounts inside the system. The admin

actor can activate, suspend, resume merchants’

subscriptions to the system.

Technologies used

In this section, we describe the key technologies

used in our implementation of the system. These

technologies used to incorporate google maps API

and implement different functionalities provided

in the application thus making the application very

reliable.

A. React (also known as React.js or ReactJS) [1]

Is an open-source JavaScript framework that is

used by Facebook. It is chosen to be used in our

system because:

- Well developed with a vibrant ecosystem of

developer tools with many pre-made front-

end components like charts, tables, and etc.

- React does not offer any concept of a built-in

container for dependency. For that, we use

Browserify, Require JS, ECMAScript 6

modules via Babel, ReactJS-di to inject

dependencies automatically. This increases

the performance of our system.

- Efficiently used with NodeJS: ReactJS is the

best option to be used with google maps API

and NodeJS connection.

B. NodeJS [2]

Is a server-side non-blocking event-driven

application that uses Googles’s V8 virtual

machine to run JavaScript code. It supports push

technology over web-socket, which allows the

development of real-time highly interactive web

PSYCHOLOGY AND EDUCATION (2021) 58(2): 4070-4074 ISSN: 00333077

4072

www.psychologyandeducation.net

applications. One advantage of Node.js is its

scalability. It can handle many simultaneous

connections with high throughput. In our system,

we used Express.js [3] which is a web application

framework for Node.js.

C. Firebase

 Is a storage facility used to efficiently store and

serve user-generated content such as images. We

used it in our system to store all the images

uploaded by the different actors like bank receipts

or product images uploaded by merchants.

D. Socket.Io

 Is a JavaScript client library that provides

reliability for handling proxies and load balancers.

We used it in our system to chat and sending real-

time notifications when the product price goes

down a value specified by the customer.

E. Google Maps API

Allow developers to integrate Google Maps into

their systems using their own data points. In our

application, we used it to represent stores and

customers' locations on the map. And exploiting

graph representations of the different points in

order to be used by our customized A* algorithm

as explain thoroughly later in the paper.

F. MongoDB [4]

Is a database management system designed for the

Internet and web-based applications. It is a

document-based No-SQL database and used in

our system because:

- Data is stored as JSON style documents index

on any attributes.

- Fast In-place updates.

- Very easy to incorporate with NodeJS thus we

achieved the "MERN" usage that stands for

(MongoDB+ExpressJS+ReactJS+NodeJS).

- Support auto-sharing feature [5] which gives

the ability to store data records across multiple

machines and meet the demands of data

growth. As the size of the data increases, a

single machine may not be sufficient to store

the data nor provide an acceptable read or write

throughput.

Our approach: Enhancements and

Customizing

In this section, we describe the three features

implemented in our system (finding all stores

nearby the customer, finding the shortest path

between customer and store, and product watching

functionality). It discusses the different algorithms

used to implement each one of these features.

A. Shortest path between customer and store

Fetching the shortest path between the customer

and the chosen store is the first feature

implemented in our system. We use the google

maps API to get the graph of the specified

coordinates of the customer and the store. Then, a

customized A* algorithm is used to fetch the

shortest path between them by using Euclidean

Distance as our heuristic function. Finally, the

resulted points are sent back to google API in

order to display the path on the map graphically as

shown in figure 2.

Figure 2. Shortest Path between customer and

store

A* Algorithm vs Dijkstra Algorithm

This section explains the reason for using A*

algorithm instead of Dijkstra's algorithm to find

the shortest path. Although the Dijkstra algorithm

finds the optimal shortest path between two points

over the A* algorithm, it has a time complexity of

O(E+VlogV) [9]. We find that the number of

visited nodes by the Dijkstra algorithm is very

high when compared to the nodes visited by the

A* algorithm which considered being time-

consuming. Note that the time factor is very

important in finding the shortest path in our

system, especially if the customer is walking in

PSYCHOLOGY AND EDUCATION (2021) 58(2): 4070-4074 ISSN: 00333077

4073

www.psychologyandeducation.net

the street and quickly needs to fetch the path to

the required store. Figure 3 shows the difference

between A* and Dijkstra algorithms. The figure

shows that the Dijkstra algorithm got the optimal

path. At the same time, it shows that the path got

by the A* algorithm is close to being optimal. In

contrast, A* visited only 201 nodes while Dijkstra

visited 2186 nodes, which is very high and time-

consuming compared to the A* algorithm. As

future work, we plan to increase the optimality of

the A* algorithm more by implementing a better

Heuristic function in order to calculate the optimal

path more efficiently.

Figure 3. A* vs Dijkstra

A* Heuristic Function

Many options for implementing the A* heuristic

function are evaluated and tested. Such as

Manhattan Distance, Diagonal Distance, and

Euclidean Distance. Euclidean Distance in our

approach is chosen as a heuristic function because

it gives the possibility to move in any direction,

unlike the Manhattan Distance which just moves

in four different directions (up, down, left, and

rightwards). We use the following equation to

compute the Euclidean distance, where p1 and q1

stand for the latitude of customer and store,

respectively. While p2 and q1 stand for

customer’s and store’s longitude.

Figure 4. Google map represented as a graph

Figure 4 shows how a google map is represented

as a graph. Each intersection between two or more

roads represents a vertex. While the road connects

two vertices represents an edge of the graph.

B. All stores nearby the customer

The second feature in our system is giving the

customer the ability to find all stores within a

specific area around him. The system

automatically fetches the customer’s coordinate

(latitude and longitude) using Geolocation API in

vanilla JS function called

"getCurrentPosition()"[6]. Customer coordinate,

required distance in KM, and coordinates list of

stores found in the customer region are sent to our

customized Haversine formula[7]. The Haversine

formula calculates the distance between two

points on spherical objects and works as the

followings: The formula takes the mean radius of

the earth (r), which is estimated to be 6371. Also

it takes the coordinates (latitude and longitude) of

the customer and the store (,). Then, it applies

the following formula on them:

C. Product watching functionality

The third advanced features implemented in our

system is giving the ability for customers to watch

the different products they want. When the price

of a product goes down to a certain value

specified previously by a customer,

then that customer will be notified immediately.

A customized observer pattern is used to

implement the feature. In order for the notification

process to be done in a real-time fashion, a

Socket.Io[8] library is used. Once a merchant

changes the price of a product, the system on the

server-side checks the watching list of that

PSYCHOLOGY AND EDUCATION (2021) 58(2): 4070-4074 ISSN: 00333077

4074

www.psychologyandeducation.net

product and sends notifications for any customer

whose target price -saved in the watching list- is

equal or less than the new price.

Future improvements

Some possible future improvements that should

make our system perform in a more optimized

way can be summarized as the followings:

- Improve the heuristic function to have better

results in locating the optimal path between

customers and stores. Regarding correctness

and time needed for calculations.

- Implement a more accurate formula other

than Haversine formula to get better results

when determining the closest stores nearby

the customer.

Conclusion

The discussion in this paper focuses on the main

advanced features implemented in our e-

commerce system: Finding all stores nearby the

customer, finding the shortest path between a

customer and the store, and product watching

functionality. The paper presents the various

improvements done on the different algorithms

used to implement each one of these features.

Such improvements to the e-commerce system

make it a multipurpose system. While the system

can be used as an ordinary e-commerce tool. It

can be used as a navigational tool for finding

stores located around while travelling. And also as

an alert tool that sends notifications for customers

on responding to price modifications.

Using such a system will be very beneficial,

especially in lock-downs circumstances because

for conditions like COVID-19 which give the

possibility for stores and markets to continue

working while avoiding crowded places.

References

[1] React - A JavaScript library for building

user interfaces https://reactjs.org/.

[2] https://openjsf.org/.

[3] https://expressjs.com/.

[4] http://www.tutorialspoint.com/mongodb/.

[5] Sanobar Khan, P. M. \SQL Suport over

MongoDB using Metadata". in International

Journal of Scienti c and Research

Publications Vol 3 (2013).

[6] https: //developer.mozilla.org/en-US/docs

/Web/API/Geolocation/getCurrentPosition.

[7] Prof. Nitin R.Chopde1, M. M. K. N.

"Landmark Based Shortest Path Detection

by Using A* and Haversine Formula"

[8] https://socket.io/.

[9] https://everythingcomputerscience.com/algo

rithms/Dijkstras_Algorithm. html.

[10] https://neo4j.com/docs/graph-algorithms

/current/labs-algorithms/euclidean/.

https://reactjs.org/
https://openjsf.org/
https://expressjs.com/
http://www.tutorialspoint.com/mongodb/
https://developer.mozilla.org/en-US/docs/Web/API/Geolocation/getCurrentPosition
https://developer.mozilla.org/en-US/docs/Web/API/Geolocation/getCurrentPosition
https://developer.mozilla.org/en-US/docs/Web/API/Geolocation/getCurrentPosition
https://socket.io/
https://everythingcomputerscience.com/algorithms/Dijkstras_Algorithm.html
https://everythingcomputerscience.com/algorithms/Dijkstras_Algorithm.html
https://everythingcomputerscience.com/algorithms/Dijkstras_Algorithm.html
https://neo4j.com/docs/graph-algorithms%20/current/labs-algorithms/
https://neo4j.com/docs/graph-algorithms%20/current/labs-algorithms/
https://neo4j.com/docs/graph-algorithms/current/labs-algorithms/euclidean/

	Introduction
	System architecture
	Technologies used
	Our approach: Enhancements and Customizing
	Future improvements
	Conclusion
	References

