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ABSTRACT  

Refactoring UML class diagrams for evolution are usually carried out in an ad hoc way. These transformations can become an issue 

since it is hard to ensure that the semantics of models is preserved. Our work in this paper explores the use of the so-called Fine-

Grained Transformations (FGTs) paradigm as a formal specification and verification of UML class diagram refactoring. More 

precisely, the paper expresses UML class diagram restructurings in terms of atomic FGTs, which are considered to be the core of a 
refactoring system. The paper presents the feasibility of building traditional class diagrams refactoring (primitive and composite) 

from sequences of FGTs in a way that improves the structure and preserves the original behavior (semantic) of the class diagram. 

Besides the obvious benefits of providing rigorous specifications for refactoring tool builders and rigorous correctness guarantees, 

the paper presents many additional advantages and features of the approach. For testing, a refactoring tool FGTRefClass is 

implemented. Our experience shows that the tool facilitates the process to restructure class diagram models. 
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Introduction 

Refactorings have gained wide attention in 

software evolution community. The idea was first 

formalized in the work of Opdyke [18] and 

described in depth by Fowler [6]. Refactorings are 

techniques to improve the internal structure of the 

software while preserving its external behaviour [6, 

17-18, 20-21].  

The current trend is to apply refactorings at levels 

of abstraction above the code level [1, 19 and 23]. 

This is because many people are visually oriented 

and prefer to visualize the relationships between 

classes rather than apprehend them textually. 

Furthermore, being able to directly manipulate 

code at a higher level of granularity (i.e. methods, 

variables, and classes rather than characters) can 

make refactoring more efficient [1]. In line with 

this trend, this paper concentrates on refactoring of 

UML class diagrams.  

Several approaches have been used to formalize 

refactorings. For example, the graph 

transformation approach [3, 4 and 5] represents 

software as a graph, and refactorings are 

formalized as graph production rules [2, 7, 10-14]. 

As another approach, the logic based conditional 

transformation approach [8, 9] represents software 

as logic terms and refactorings are formalized as 

conditional transformation with pre- and post-

conditions. 

In general, these approaches represent a refactoring 

(primitive and composite) in a refactoring tool as a 

sequence of code to transform the target system, 

with a set of preconditions that must be satisfied in 

order to apply that refactoring, as illustrated in 

Figure 1. There is no transparency of the detailed 

steps internally required during refactoring. 

BLACK BOX

Preconditions

 Postconditions

Refactoring

X

 

Figure 1. Refactorings as black box 

Treating refactoring as a black box is the source of 

several problems and shortcomings in refactoring 

tools: 

1. Where redundancy inside or between 

refactoring may exist, there is no possibility to 

remove it, which implies that effort spent on 

checking preconditions and on executing the 

transformation is wasted. 

2. Where conflict occurs between two 

refactorings, there is no possibility to know 
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which part of the two refactorings caused the 

conflict. This makes the process of resolving 

the conflicts more difficult.   

3. Where there is a sequential dependency 

between two refactorings, there is no 

possibility to know at what specific point one 

of the two refactorings is sequentially 

dependent on the other.  

4. Because refactorings are considered as a piece 

of code, it is difficult to parallelize the 

resulting transformations that need to be 

applied on the model. 

5. Because the list of possible refactorings is 

unbounded, no tool vender can provide end 

users with all their needs. Instead, refactoring 

tools providers need to give end users the 

ability to create their own refactorings. This is 

difficult in the current approaches, because it 

requires that the end user should write code ab 

initio to perform the refactoring.  

In order to address problems such as these, our 

previous work, described in [22] uses so-called 

Fine-Grained Transformations (FGTs). It defines 

these FGTs and constructs/executes the different 

refactorings in reference to them. The main 

contribution of this paper is to extend our work in 

[22] by presents the feasibility of the FGT 

paradigm to formalize class diagram refactorings, 

and presents the features of using such an approach.  

FGTs-Based Approach 

The refactoring approach described in [22] is based 

on a predefined set of fine-grain transformations 

(FGTs) which are the basis for the construction of 

model transformations in general. These FGTs are 

derived from the general actions that can be 

performed on elements of a model. From a formal 

point of view, these FGTs are sufficient to generate 

any kind of transformation to a given  model. 

Therefore any refactoring can be constructed by 

using a sequence of these FGTs. 
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Figure 2. Refactoring different considerations 

As shown in Figure 2.b, in previous approaches to 

building refactoring tools, a set of refactorings is 

mapped to a sequence of code that, when executed, 

translates the model to an equivalent model. This 

sequence of code may include any kind of 

statements. No meta-information about what each 

part of the code does is available to the refactoring 

tool, and consequently, the tool has no ability to 

control or manipulate any part of the code, other 

than to execute it. In this sense, the tools in these 

approaches treat refactoring as a black box with a 

set of preconditions that need to be satisfied before 

applying that refactoring. On the other hand, as 

shown in Figure 2.a, a set of refactorings in the 

FGT approach is set of directed acyclic graphs 

(FGT-DAGs), each of which specifies an ordering 

of FGTs to be used in the refactoring. The order, 

effect, preconditions and post-conditions of each 

FGT in each FGT-DAG is known to the tool, and 

can be controlled at the time of refactoring.  

Fine-Grain Transformations (FGTs) 

An FGT is an abstract operation on the model—i.e. 

a model will always be one of the implicit operands 

of an FGT, and this model will always undergo an 

incremental atomic change as a result of applying 

the FGT to it. Indeed, the change can be regarded 

as atomic in the sense that the change specified by 

the FGT cannot be broken down into further 

smaller change steps from the modeling 

perspective. The operation is abstract in the sense 

that it could be specified in a wide variety of 

concrete syntactic representations. 

As a proof of concept, a PROLOG prototype for 

class diagram refactoring tool has been 

implemented. Throughout the paper, a concrete 

syntax that resembles PROLOG rules (also called 

procedures) will be used to specify FGTs. This 

choice of concrete syntax was made to support the 

PROLOG prototype refactoring tool that has been 

built to illustrate the various ideas. The UML class 

diagram in the tool is itself stored as a set of facts 

in the PROLOG database. As will be seen below, 

the concrete syntax of each FGT has to uniquely 

identify the various components of the class 

diagram that are to change, and it also has to 

indicate the nature of the change. In general, the 

nature of the change is encapsulated in the name of 

the PROLOG rule, and the class diagram 
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components that are affected are specified as 

arguments of the rule.  

The set of FGTs that have been identified are 

closely related to the vocabulary and semantics of 

standard UML class diagram. The vocabulary of 

UML class diagram consists of a set of Objects 

(packages, classes, attributes, methods and 

parameters) to represent discrete concepts in 

software systems. The vocabulary also contains a 

set of Relations (extends, associations, reads, 

writes, calls, types) to relate the objects to one 

another.  

The set of FGTs proposed here are accordingly 

classified into two groups, where each group 

corresponds to one of the two specific kinds of 

UML class diagram vocabularies. The first group 

is concerned with all the transformation operations 

whose characterizing operands are object elements 

of the UML class diagram. In the rest of the paper, 

these FGTs  are called Object Element FGTs. FGTs 

of this group are: 

- addObject FGT: used to add object elements to 

the class diagram 

- renameObject FGT: used to change the name of 

an object element 

- changeOAMode FGT: used to change the access 

mode of an object element 

- changeODefType FGT: used to change the 

definition type of an object element  

- deleteObject: used to delete object element from 

the class diagram 

FGT Precondition Conjuncts 

Each FGT of the two groups has a set of 

precondition conjuncts  (i.e. X and Y and Z and …) 

that need to be satisfied in order to consider it as a 

legal transformation operation. In some cases, one 

or more of these conjuncts is itself a number of 

disjuncts (i.e. (X or Y)). A procedure called 

FGTPrecondConj(FGT) is implemented in the 

refactoring tool for each one of the proposed FGTs. 

FGTs precondition conjuncts will play an 

important role in preserving the behaviour of the 

system at the time of refactoring. For example, in 

order to apply the FGT: 

addObject(College,Student,getMark,_,_,int,1, 

public,[],method) 

 the underlying system must have a class with name 

Student inside the package College; and this class 

should not contain a method getMark with empty 

parameter list. The method getMark with empty 

parameter list should also not inherited from any of 

the ancestors of class College.Student. In addition, 

the return definition type of the method should be 

valid and accessible and the access mode of the 

created method should be valid. The precondition 

conjuncts for this FGT, as implemented in our tool, 

are specified as follows: 

FGTPrecondConj(addObject(Pn,Cn,Methn,_,_,O

DefT,ONum,OAMode, 

PrmLT,method)):- 

existsObject(Pn, Cn, class), not(existsObject(Pn, 

Cn, Methn, PrmLT, method),not(isInherited(Pn, 

Cn, Methn, PrmLT, 

method),validDefType(ODefT), 

canAccessType(ODefT), 

validOAMode(OAMode,method). 

Note that the comma (,) between two conjuncts 

retains the PROLOG semantics of a “logical and” 

between two rules. As another example, in order to 

apply the FGT:  

addRelation(e1,College,Student,getMark,_,[], 

method,College, Student, Mark,_,_,attribute,read) 

the method College.Student.getMark with empty 

parameter list and the attribute 

College.Student.Mark should be defined in the 

underlying system. The system may not already 

have a read access between the method 

College.Student.getMark and the attribute 

College.Student.Mark. In addition, the location of 

the source object College.Student.getMark and the 

destination object College.Student.Mark in the 

model together with the access mode of the 

destination object College.Student.Mark play an 

important role in determining the applicability of 

the previous addRelation FGT. The precondition 

conjuncts for this FGT, as implemented in our tool, 

are specified as follows: 

FGTPrecondConj(addRelation(_,FPn,FCn,FMeth

n,_,FPrmLT,method,TPn,TCn,TAttn,_,_,attribute,

RelT)):-  

   

existsObject(FPn,FCn,FMethn,FPrmLT,method), 

existsObject(TPn,TCn,TAttn,attribute),not(existR

elation(_,FPn,FCn,FMethn,FPrmLT, 
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method,TPn,TCn,TAttn,attribute,RelT) 

,[(objectAMode(TPn,TCn,TAttn,attribute,private),

FPn.FCn=TPn.TCn)|  

(objectAMode(TPn,TCn,TAttn,attribute,default ),   

   FPn=TPn)| 

objectAMode(TPn,TCn,TAttn,attribute,protected),

(subClass(FPn,FCn, TPn, TCn)|FPn=TPn))| 

objectAMode(TPn,TCn,TAttn,attribute,public)]. 

Note that in the above rule, the vertical bar (|) 

between two conjuncts retains the PROLOG 

semantics of “logical or” between two rules. 

FGT Directed Acyclic Graphs (FGT-DAGs) 

Sequential dependency between two FGTs, FGTi 

and FGTj occurs when the FGTj  is not applicable 

(its set of precondition conjuncts are not satisfied) 

and there is a consequent need to first apply FGTi 

on the system to modify the state of the system so 

that will FGTj will indeed be applicable (its set of 

precondition conjuncts will be satisfied). In this 

case we say that FGTj is sequentially dependent on 

FGTi. We represent the sequential dependency 

between the two FGTs as: FGTi  FGTj 

For example, the FGT 

addObject('P','A', m1,_,_,void, 0,public,[],method) 

that is used to add the method m1 inside the class 

P.A is sequentially dependent on the FGT 

addObject('P','A',_,_,_,_,_,public,_, class) 

that is used to add the class A inside the package P, 

because one first has to add the container (class 

P.A) and before adding members inside it. The 

sequential dependency between the two FGTs is 

represented as: 

addObject('P','A',_,_,_,_,_,public,_,class)  

addObject('P','A',m1,_,_,void,0,public,[], method) 

In the proposed approach, the sequence of FGTs 

that represent a specific refactoring are inserted 

into one or more special data structures called an 

FGT directed acyclic graph (FGT-DAGs). Each 

node in the FGT-DAG represents one of the FGTs. 

These FGTs are ordered in the FGT-DAG 

according to their sequential dependencies. All the 

possible sequential dependencies between all the 

FGTs that are used in the approach have been 

catalogued.  There is no dependency between the 

different FGT-DAGs of a refactoring. As a result 

they can be processed concurrently, thus increasing 

the scope for parallelizing the refactoring 

operations to be carried out on the class diagram. 

FGTs for Primitive and Composite 

Refactorings 

Refactoring theory and tools assume that there 

exists a finite set of primitive refactorings [12, 18 

and 20]. A primitive refactoring is an atomic 

refactoring that cannot be split into more 

refactorings. For each primitive refactoring, a set of 

preconditions exists that will guarantee behaviour 

preservation of the system under consideration. 

These preconditions are implemented inside the 

refactoring tool and need to be checked before 

applying the related refactoring. 

A composite refactoring is a sequence of primitive 

refactorings that need to be applied on the model as 

one unit. This means that either all of the primitive 

refactorings that constitute the composite 

refactoring will be applied on the model; or, if there 

is one of the preconditions of one of the including 

primitive refactorings is not satisfied, then none of 

the primitive refactorings will be applied. A 

composite refactoring can be applied to the system 

if all its constituent primitive refactorings can be 

applied to the system. Because a composite 

refactoring consists of primitive ones that preserve 

system behaviour, the composite will also preserve 

the behaviour of the system. 

Our work in this paper shifts the granularity of 

refactoring one level down: primitive refactorings 

are constructed from a sequence of FGTs. The 

relationship between primitive refactorings, 

composite refactorings and FGTs is intuitively 

reflected in Figure 3.b. Figure 3.a shows that a 

composite refactoring is a sequence of primitive 

ones, and each primitive refactoring can be defined 

as a sequence of FGTs. Thus, each composite 

refactoring can be carried out as a sequence of 

FGTs. 

Primitive Ref

Composite Ref

FGTs

Composite

Refactorings

Primitive

Refactorings

Fine-Grain

Transformations (FGTs)

Seq. Of

Seq. Of

(a) (b)  

Figure 3. Primitive, composite refactorings and 

FGTs. 

Note that in most of the cases the precondition 

conjuncts of the FGTs that the primitive consists of 
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are sufficient to cover the preconditions of that 

primitive, so they are enough to ensure the 

behaviour preservation of the system. However, in 

some cases the precondition conjuncts of the FGTs 

are alone not sufficient to preserve the behaviour of 

the system. Behviour preservation is only 

guaranteed if all the preconditions of the primitive 

refactoring are satisfied. In recognition of this fact, 

and to keep our approach general and thus leave the 

door open to define new refactorings in the future 

we  define -as shown in Figure 4.a- the set of 

preconditions for each primitive refactoring at two 

different levels: 

a. FGT-Level Preconditions: The set of 

precondition conjuncts that are defined at the level 

of FGTs.  

b. Refactoring-Level Preconditions: The set of 

precondition conjuncts that are defined at the level 

of the whole refactoring. This set contains 

preconditions that are not covered by (cannot be 

extracted from) the precondition conjuncts of the 

FGTs from which the refactoring is constructed. 

In the present text, the focus is on preconditions. 

However, post-conditions can also be viewed as 

being at the refactoring-level as well as at the FGT-

level. These notions are abstractly portrayed in 

Figures 4.a and 4.b with respect to our approach 

and previous approaches respectively. 
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Figure 4. Primitive refactoring different 

considerations 

Motivated Example 

To illustrate our approach, the composite 

refactoring encapsulateAttribute—which is used to 

prevent direct accesses to a specific attribute—will 

be given as an example.  

Figure 5.a gives a UML class diagram for a 

simplified College system. The system has a 

package called College with three classes Teacher, 

Student and Registration. Note that the information 

extracted from the class diagram alone is not 

sufficient for refactoring. For example, if a method 

m is to be deleted from the class diagram using the 

primitive refactoring deleteMethod, then that 

method should be not referenced by any other 

object elements in the class diagram, and this kind 

of referencing information is not in the UML class 

diagram. The underlying logic representation of the 

class diagram should include this kind of extra 

information. To get such information we have to 

refer to the code level implementation of the 

system. Figure 5.a shows such information 

represented as dashed arrows between the different 

object elements of the class diagram. 

Suppose that one of the suggested enhancement to 

the class diagram of the College  system is to 

encapsulate the attribute Mark in the Student class. 

This refactoring is useful for increasing 

modularity, by avoiding direct accesses of the local 

state of a Student.  For this restructuring we use the 

composite refactoring encapsulateAttribute. The 

composite encapsulateAttribute includes the 

following actions: 

- Add getter and setter methods. This is done by 

using the primitive refactorings addGetter and 

addSetter. 

- Replace accesses to the attribute by calls to the 

newly created methods. This is done by using 

the primitive refactorings 

attributeReadToMethodCall and 

attributeWriteToMethodCall. 

-  Make the attribute private. This is done by 

using the primitive refactoring 

changeAttributeAccess.  

+ID : String

+Name : String

+Mark : Integer

Student

+viewStMark() : void

+insertStMark() : void

Teacher

read

write

+reportResults() : void

Registration

re
ad

+getMark() : Integer

+setMark(in m : Integer) : void

+ID : String

+Name : String

+Mark : Integer

Student

+viewStMark() : void

+insertStMark() : void

Teacher

ca
ll

ca
ll

+reportResults() : void

Registration

ca
ll

read

write

( a )

( b )

-

Figure 5. A simplified UML class diagram of a 

college system. (a) before refactoring and (b) after 

refactoring 

The order of the primitive refactorings inside the 

composite is shown in Figure 6. Note that the order 

reflects the sequential dependency that exist 

between the different refactorings inside the 

composite.  According to the order, a refactoring 
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tool should first add the getter and setter methods. 

Then it should redirect the destination of all the 

read/write accesses from the attribute to them. 

After this stage, the attribute is not referenced by 

any object in the system. The refactoring tool can 

therefore change the access mode of the attribute 

from public to private. 

 

Figure 6. encapsulateAttribute composite 

refactoring 

In our refactoring tool, in order  to encapsulate the 

attribute College.Student.Mark, we call the 

procedure:  

encapsulateAttribute('College','Student', 'Mark') 

where the three arguments in the procedure refer to 

the name of the attribute College.Student.Mark to 

be encapsulated. For each one of the primitive 

refactorings that are included in the composite 

encapsulateAttribute (shown in Figure 6, and also 

in the left column of Table 1) the 

encapsulateAttribute procedure will produce a 

sequence of FGTs which represents the 

transformation actions to be performed as part of 

the encapsulation process. These FGTs are shown 

in the right column of the table. 

Table 1.  encapsulateAttribute Refactoring 

Sequence Of Primitive 

Refactorings 
Sequence Of FGTs For Each Primitive Refactoring 

addGetter('College', 

'Student', 'Mark') 

FGT1:addObject(College,Student, getMark,_,_,int,1,public,[],method) 

FGT2:addRelation(_,College,Student,getMark,_,[],method,College,Student,Mark, 

_,_, attribute, read) 

addSetter('College', 

'Student', 'Mark') 

 FGT3:addObject(College,Student,setMark,_,_,void,0,public,[(p,(int,1))],method) 

 FGT4:addRelation(_,College,Student,setMark,_,[int],method,College, 

Student, Mark,_,_, attribute,write) 

attributeReadToMethod

Call('College', 'Student', 

'Mark', 'College', 

'Student',getMark, []) 

 FGT5:deleteRelation(_,College,Teacher,viewStMark,_,[],method, College, 

Student, Mark,_,_, attribute,read) 

 FGT6:deleteRelation(_,College,Registration, reportResults,_,[],method,  

College,Student,Mark,_,_,attribute, read) 

 FGT7:addRelation(_,College,Teacher, 

viewStMark,_,[],method,College,Student,getMark,_,[],method,call) 

FGT8:addRelation(_,College,Registration,reportResults,_,[],method,College,Stude

nt,getMark,_,[],method, call) 

attributeWriteToMetho

dCall( 'College', 

'Student', 'Mark', 

'College', 'Student', 

setMark, [int]) 

FGT9:deleteRelation(_,College,Teacher,insertStMark,_,[],method,College,Student, 

Mark,_,_,attribute,write) 

FGT10:addRelation(_,College,Teacher,insertStMark,_,[],method,College, Teacher, 

setMark, _,[int], method, write) 

changeAttributeAccess(

'College','Student','Mark

', private) 

 FGT11:changeOAMode(College,Student,Mark,_,_,attribute,public, private) 

 

For example, in the primitive refactoring 

attributeReadToMethodCall that has the following 

format:  

 

attributeReadToMethodCall(Destx, Desty) 

 

any read access from anywhere in the system to the 

destination Destx will be redirected to a new 

destination Desty. This means that for each read 

access, two FGT operations will be produced, one 

to delete the original read access "read relation" 
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from the source S to the destination Destx, this is 

done by  FGT: 

deleteRelation(_, S, Destx, read) 

and the other to add a new read access from the 

source S to the new distention Desty, this is done by 

FGT: 

addRelation(_, S, Desty, read) 

In the College system, the attribute Student.Mark 

has two read accesses: one from the method 

Teacher.viewStMark; and the other from  the 

method Registration.reportResults. This means 

that four FGTs will be produced by this refactoring: 

FGT5, FGT6, FGT7 and FGT8 as shown in right 

column of Table 1. 

FGTs produced by each primitive refactoring in the 

composite are then allocated to one or more FGT-

DAGs; each according to its specific sequential 

dependencies. Thus, sequential dependencies 

between the different FGTs in the different 

primitive refactorings have to be found. After that 

the reduction algorithm is executed on these FGT-

DAGs to remove any redundancies between the 

different FGTs. At the end of these actions, the 

composite refactoring encapsulateAttribute will be 

represented as shown in Figure 7.  

changeAttribute

Access

attributeReadToMethodCall 

addSetter

encapsulateAttribute Composite Refactoring

FGT3

FGT4

addGetter

FGT1

FGT2

attributeWriteTo

MethodCall

FGT9

FGT10

FGT5 FGT6 FGT7 FGT8

FGT11

( a )

encapsulateAttribute Composite Refactoring

FGT3

FGT4

FGT1

FGT2

FGT9

FGT10

FGT5 FGT6 FGT7 FGT8

FGT11

( b )

Figure 7. encapsulateAttribute Composite 

Refactoring as represented in our approach 

Figure 7.a shows from what primitive refactorings 

each FGT comes from. Figure 7.b shows the 

sequential dependencies between these FGTs. Note 

that as shown in Figure 7.b the eleventh FGTs that 

are generated by the  composite 

encapsulateAttribute are distributed among two 

sequentially independent FGT-DAGs which gives 

the possibility to apply the two FGT-DAGs 

concurrently to the system.  

IV.  Features of the FGT approach 

In this section we discuss the feature of using the 

FGT paradigm as a formalization of class diagram 

refactorings.  

1. Remove Redundancies 

One of the advantages of dealing with refactoring 

as a sequence of FGTs is the ability to remove 

redundancies between sequences of FGTs. We call 

this process a reduction process. The final effect of 

the sequence of FGTs on the class diagram after the 

reduction process is the same as the effect of the 

sequence without any reduction. Two types of FGT 

reductions can be identified: 

Absorb Reduction: This occurs when two FGTs are 

absorbed by one that has the same effect of the two. 

For example, suppose that the user wants to add 

new method mx inside class P.A. To do this he uses 

the FGT: 

addObject('P','A',mx,_,_,void,0,public,[],method) 

After that the same user or another one decides to 

rename method mx in class P.A to another name my. 

To do this he uses FGT:   

renameObject('P','A', mx,_,[],method,my) 

By the reduction process the two operations will be 

absorbed into the single FGT:  

addObject('P','A',my,_,_,void,0,public,[],method ) 

Cancel Reduction: This occurs when two FGTs 

cancel each other. For example, suppose that the 

user wants to add new method mx inside class P.A. 

To do this he uses FGT:  

addObject('P','A',mx,_,_,void,0,public,[],method) 

After that the same user or another one for some 

reason decides to delete the method mx from class 

P.A. To do this he uses FGT:  

deleteObject('P','A', mx,_,[],method) 

By the reduction process, the two operations will 

be removed from the FGT sequence. In general, the 

reduction process increases the efficiency of the 

refactoring algorithm by reducing the number of 

FGTs that need to be applied on the model.  

 

2. Detect & Resolve Conflicts 

Conflicts between multiple refactorings can be 

managed at the level of FGTs rather than at the 
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level of the whole refactorings. Conflict between 

FGTi and FGTj occurs when it is the case that 

applying them in any order will make the later one 

inapplicable. For example, 

addObject('P','A',mx,_,_,void,0,public,[],method) 

 and 

renameObject('P','A', my,_,[],method, mx) 

are in conflict (mutually exclusive), because 

applying any one will prohibit applying the other. 

The tool can discover the first occurrence of 

conflict between the two refactorings which gives 

the ability to resolve this conflict later. 

3. Find Sequential dependencies 

Sequential dependencies between multiple 

refactorings can be managed at the level of FGTs 

rather than at the level of the whole refactoring. 

Sequential dependency between two FGTs, FGTi 

and FGTj (FGTjFGTi) occurs when FGTi is not 

applicable (its preconditions are not satisfied) but 

if FGTj is applied first, then FGTi will become 

applicable. In this case we say that FGTi is 

sequentially dependent on FGTj. For example, 

renameObject('P','A',mx,_,[],method,my) 

sequentially depends on  

addObject('P','A',mx,_,_,void,0,public,[],method) 

because if the method mx is not in class P.A, then 

one first has to add it to the class P.A, before 

attempting to rename it. The tool can discover at 

what specific point or points the two refactorings 

are sequentially dependent.  

4 Increasing Parallelizing opportunities 

Parallelizing opportunities in our approach are 

automatically manifested at the time of refactoring 

or during the process of detecting conflicts, 

removing redundancies and finding sequential 

dependencies between refactorings. This is 

basically because the FGTs for a refactoring may 

be assigned to one of multiple FGT-DAGs, 

depending on the sequentially dependency between 

these FGTs. These FGT-DAGs are independent 

and can be managed concurrently. 

 

5. Build new Refactorings  

In a refactoring tool based on FGTs, end users will 

be able to build their own refactorings without a 

need to write code. This is a very important feature 

because the list of possible refactorings is 

undetermined, and no tool vendor can support the 

end users with all their needs. Our approach solves 

this shortage by giving the end users the ability to 

construct new refactorings by using the set of the 

low level FGTs. To create a new refactoring: the 

end user need just to select the sequence of FGTs 

needed to construct his refactoring. The new 

refactoring will be given a name, list of input 

parameters, and can be saved in the refactoring tool 

for a later use.  

FGTRefClass TOOL: Evaluation and Testing 

Because of its overall suitability for prototyping, it 

was decided to build our refactoring tool 

FGTRefClass based on Prolog to experiment with 

FGT-based refactoring concepts. This decision was 

partially inspired by the JTRANSFORMER tool 

described in [13], which represents Java code as 

Prolog facts, and executes refactoring by 

manipulating these facts. The decision also means 

that many of the explanations relating to FGT-

based refactoring can be given by referring to the 

Prolog facts (logic-terms) that have been used as 

data for the tool. 

Fig 8 describes the architecture of our class 

diagram refactoring tool.  The tool takes the XML 

document of the class diagram as input. Then it 

extracts the Prolog facts (or logic-terms) from the 

XML document. The vocabulary extracted is 

limited to a set of facts to represent commonly 

referenced objects (i.e. packages, classes, 

attributes, methods, and parameters) and relations 

(i.e. extensions, associations, reads, writes, calls, 

types) within or between the object elements in 

UML class diagrams. 
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Figure 8. Architecture of our FGTRefClass TOOL 

However, it turns out that the conventionally 

available UML class diagram information is 

inadequate for implementing the full range of 

refactorings mentioned in the literature. Some 

refactorings require, in addition, access 

information—i.e. information that shows call 

relationships between methods and read or write 

relationships between methods and attributes. This 

need for augmenting UML class diagram 

information with additional access information was 

also recognized in the graph-based approach to 

refactoring, pioneered by Mens [14]. In 

FGTRefClass tool, access information is gotten 

from the sequence diagrams. 

When the developer asks the tool to apply a specific 

refactoring on the stored Prolog facts, then the 

Refactoring Package Module works here. The 

module will extract all the sequences of FGTs for 

that refactoring. These FGTs will be applied one 

after another on the system. The output of this 

process will be in the form of XML document of 

the restructured class diagram. 

Conclusions 

This paper investigated the feasibility of using FGT 

paradigm as a formal specification of UML class 

diagram refactorings. The approach defines and 

executes class diagram refactorings as a set of 

FGTs and manages sequential dependencies, 

conflicts and redundancies at the level of these low 

level operations. In addition, it gives the end users 

the ability to build new refactorings without having 

to write a code. 
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