
PSYCHOLOGY AND EDUCATION (2021) 58(2): 4060-4069 ISSN: 00333077

4060

www.psychologyandeducation.net

Formal Specification and Verification of UML Class Diagram Refactorings -

Based on FGT Paradigm

Emad Sa’adeh

An-Najah National University, Computerized Information System Department

Email: esaadeh@najah.edu

ABSTRACT

Refactoring UML class diagrams for evolution are usually carried out in an ad hoc way. These transformations can become an issue

since it is hard to ensure that the semantics of models is preserved. Our work in this paper explores the use of the so-called Fine-

Grained Transformations (FGTs) paradigm as a formal specification and verification of UML class diagram refactoring. More

precisely, the paper expresses UML class diagram restructurings in terms of atomic FGTs, which are considered to be the core of a
refactoring system. The paper presents the feasibility of building traditional class diagrams refactoring (primitive and composite)

from sequences of FGTs in a way that improves the structure and preserves the original behavior (semantic) of the class diagram.

Besides the obvious benefits of providing rigorous specifications for refactoring tool builders and rigorous correctness guarantees,

the paper presents many additional advantages and features of the approach. For testing, a refactoring tool FGTRefClass is

implemented. Our experience shows that the tool facilitates the process to restructure class diagram models.

Keywords

Class diagram refactorings, fine-grain transformations, conflicts, sequential dependencies, redundancies

Article Received: 10 August 2020, Revised: 25 October 2020, Accepted: 18 November 2020

Introduction

Refactorings have gained wide attention in

software evolution community. The idea was first

formalized in the work of Opdyke [18] and

described in depth by Fowler [6]. Refactorings are

techniques to improve the internal structure of the

software while preserving its external behaviour [6,

17-18, 20-21].

The current trend is to apply refactorings at levels

of abstraction above the code level [1, 19 and 23].

This is because many people are visually oriented

and prefer to visualize the relationships between

classes rather than apprehend them textually.

Furthermore, being able to directly manipulate

code at a higher level of granularity (i.e. methods,

variables, and classes rather than characters) can

make refactoring more efficient [1]. In line with

this trend, this paper concentrates on refactoring of

UML class diagrams.

Several approaches have been used to formalize

refactorings. For example, the graph

transformation approach [3, 4 and 5] represents

software as a graph, and refactorings are

formalized as graph production rules [2, 7, 10-14].

As another approach, the logic based conditional

transformation approach [8, 9] represents software

as logic terms and refactorings are formalized as

conditional transformation with pre- and post-

conditions.

In general, these approaches represent a refactoring

(primitive and composite) in a refactoring tool as a

sequence of code to transform the target system,

with a set of preconditions that must be satisfied in

order to apply that refactoring, as illustrated in

Figure 1. There is no transparency of the detailed

steps internally required during refactoring.

BLACK BOX

Preconditions

 Postconditions

Refactoring

X

Figure 1. Refactorings as black box

Treating refactoring as a black box is the source of

several problems and shortcomings in refactoring

tools:

1. Where redundancy inside or between

refactoring may exist, there is no possibility to

remove it, which implies that effort spent on

checking preconditions and on executing the

transformation is wasted.

2. Where conflict occurs between two

refactorings, there is no possibility to know

PSYCHOLOGY AND EDUCATION (2021) 58(2): 4060-4069 ISSN: 00333077

4061

www.psychologyandeducation.net

which part of the two refactorings caused the

conflict. This makes the process of resolving

the conflicts more difficult.

3. Where there is a sequential dependency

between two refactorings, there is no

possibility to know at what specific point one

of the two refactorings is sequentially

dependent on the other.

4. Because refactorings are considered as a piece

of code, it is difficult to parallelize the

resulting transformations that need to be

applied on the model.

5. Because the list of possible refactorings is

unbounded, no tool vender can provide end

users with all their needs. Instead, refactoring

tools providers need to give end users the

ability to create their own refactorings. This is

difficult in the current approaches, because it

requires that the end user should write code ab

initio to perform the refactoring.

In order to address problems such as these, our

previous work, described in [22] uses so-called

Fine-Grained Transformations (FGTs). It defines

these FGTs and constructs/executes the different

refactorings in reference to them. The main

contribution of this paper is to extend our work in

[22] by presents the feasibility of the FGT

paradigm to formalize class diagram refactorings,

and presents the features of using such an approach.

FGTs-Based Approach

The refactoring approach described in [22] is based

on a predefined set of fine-grain transformations

(FGTs) which are the basis for the construction of

model transformations in general. These FGTs are

derived from the general actions that can be

performed on elements of a model. From a formal

point of view, these FGTs are sufficient to generate

any kind of transformation to a given model.

Therefore any refactoring can be constructed by

using a sequence of these FGTs.

FGT

FGT

FGT

FGT

FGT

FGT

FGT

Refactoring XRefactoring X

FGT FGT

FGT

FGT FGT

Statement 1 …………………………….

Statement 2 …………………………….

Statement 3 …………………………….

………..

………..

………..

………..

………..

………..

………..

Statement n-1 ………………………….

Statement n …………………………….

B
L
A

C
K

 B
O

X

(a) (b)

Figure 2. Refactoring different considerations

As shown in Figure 2.b, in previous approaches to

building refactoring tools, a set of refactorings is

mapped to a sequence of code that, when executed,

translates the model to an equivalent model. This

sequence of code may include any kind of

statements. No meta-information about what each

part of the code does is available to the refactoring

tool, and consequently, the tool has no ability to

control or manipulate any part of the code, other

than to execute it. In this sense, the tools in these

approaches treat refactoring as a black box with a

set of preconditions that need to be satisfied before

applying that refactoring. On the other hand, as

shown in Figure 2.a, a set of refactorings in the

FGT approach is set of directed acyclic graphs

(FGT-DAGs), each of which specifies an ordering

of FGTs to be used in the refactoring. The order,

effect, preconditions and post-conditions of each

FGT in each FGT-DAG is known to the tool, and

can be controlled at the time of refactoring.

Fine-Grain Transformations (FGTs)

An FGT is an abstract operation on the model—i.e.

a model will always be one of the implicit operands

of an FGT, and this model will always undergo an

incremental atomic change as a result of applying

the FGT to it. Indeed, the change can be regarded

as atomic in the sense that the change specified by

the FGT cannot be broken down into further

smaller change steps from the modeling

perspective. The operation is abstract in the sense

that it could be specified in a wide variety of

concrete syntactic representations.

As a proof of concept, a PROLOG prototype for

class diagram refactoring tool has been

implemented. Throughout the paper, a concrete

syntax that resembles PROLOG rules (also called

procedures) will be used to specify FGTs. This

choice of concrete syntax was made to support the

PROLOG prototype refactoring tool that has been

built to illustrate the various ideas. The UML class

diagram in the tool is itself stored as a set of facts

in the PROLOG database. As will be seen below,

the concrete syntax of each FGT has to uniquely

identify the various components of the class

diagram that are to change, and it also has to

indicate the nature of the change. In general, the

nature of the change is encapsulated in the name of

the PROLOG rule, and the class diagram

PSYCHOLOGY AND EDUCATION (2021) 58(2): 4060-4069 ISSN: 00333077

4062

www.psychologyandeducation.net

components that are affected are specified as

arguments of the rule.

The set of FGTs that have been identified are

closely related to the vocabulary and semantics of

standard UML class diagram. The vocabulary of

UML class diagram consists of a set of Objects

(packages, classes, attributes, methods and

parameters) to represent discrete concepts in

software systems. The vocabulary also contains a

set of Relations (extends, associations, reads,

writes, calls, types) to relate the objects to one

another.

The set of FGTs proposed here are accordingly

classified into two groups, where each group

corresponds to one of the two specific kinds of

UML class diagram vocabularies. The first group

is concerned with all the transformation operations

whose characterizing operands are object elements

of the UML class diagram. In the rest of the paper,

these FGTs are called Object Element FGTs. FGTs

of this group are:

- addObject FGT: used to add object elements to

the class diagram

- renameObject FGT: used to change the name of

an object element

- changeOAMode FGT: used to change the access

mode of an object element

- changeODefType FGT: used to change the

definition type of an object element

- deleteObject: used to delete object element from

the class diagram

FGT Precondition Conjuncts

Each FGT of the two groups has a set of

precondition conjuncts (i.e. X and Y and Z and …)

that need to be satisfied in order to consider it as a

legal transformation operation. In some cases, one

or more of these conjuncts is itself a number of

disjuncts (i.e. (X or Y)). A procedure called

FGTPrecondConj(FGT) is implemented in the

refactoring tool for each one of the proposed FGTs.

FGTs precondition conjuncts will play an

important role in preserving the behaviour of the

system at the time of refactoring. For example, in

order to apply the FGT:

addObject(College,Student,getMark,_,_,int,1,

public,[],method)

 the underlying system must have a class with name

Student inside the package College; and this class

should not contain a method getMark with empty

parameter list. The method getMark with empty

parameter list should also not inherited from any of

the ancestors of class College.Student. In addition,

the return definition type of the method should be

valid and accessible and the access mode of the

created method should be valid. The precondition

conjuncts for this FGT, as implemented in our tool,

are specified as follows:

FGTPrecondConj(addObject(Pn,Cn,Methn,_,_,O

DefT,ONum,OAMode,

PrmLT,method)):-

existsObject(Pn, Cn, class), not(existsObject(Pn,

Cn, Methn, PrmLT, method),not(isInherited(Pn,

Cn, Methn, PrmLT,

method),validDefType(ODefT),

canAccessType(ODefT),

validOAMode(OAMode,method).

Note that the comma (,) between two conjuncts

retains the PROLOG semantics of a “logical and”

between two rules. As another example, in order to

apply the FGT:

addRelation(e1,College,Student,getMark,_,[],

method,College, Student, Mark,_,_,attribute,read)

the method College.Student.getMark with empty

parameter list and the attribute

College.Student.Mark should be defined in the

underlying system. The system may not already

have a read access between the method

College.Student.getMark and the attribute

College.Student.Mark. In addition, the location of

the source object College.Student.getMark and the

destination object College.Student.Mark in the

model together with the access mode of the

destination object College.Student.Mark play an

important role in determining the applicability of

the previous addRelation FGT. The precondition

conjuncts for this FGT, as implemented in our tool,

are specified as follows:

FGTPrecondConj(addRelation(_,FPn,FCn,FMeth

n,_,FPrmLT,method,TPn,TCn,TAttn,_,_,attribute,

RelT)):-

existsObject(FPn,FCn,FMethn,FPrmLT,method),

existsObject(TPn,TCn,TAttn,attribute),not(existR

elation(_,FPn,FCn,FMethn,FPrmLT,

PSYCHOLOGY AND EDUCATION (2021) 58(2): 4060-4069 ISSN: 00333077

4063

www.psychologyandeducation.net

method,TPn,TCn,TAttn,attribute,RelT)

,[(objectAMode(TPn,TCn,TAttn,attribute,private),

FPn.FCn=TPn.TCn)|

(objectAMode(TPn,TCn,TAttn,attribute,default),

 FPn=TPn)|

objectAMode(TPn,TCn,TAttn,attribute,protected),

(subClass(FPn,FCn, TPn, TCn)|FPn=TPn))|

objectAMode(TPn,TCn,TAttn,attribute,public)].

Note that in the above rule, the vertical bar (|)

between two conjuncts retains the PROLOG

semantics of “logical or” between two rules.

FGT Directed Acyclic Graphs (FGT-DAGs)

Sequential dependency between two FGTs, FGTi

and FGTj occurs when the FGTj is not applicable

(its set of precondition conjuncts are not satisfied)

and there is a consequent need to first apply FGTi

on the system to modify the state of the system so

that will FGTj will indeed be applicable (its set of

precondition conjuncts will be satisfied). In this

case we say that FGTj is sequentially dependent on

FGTi. We represent the sequential dependency

between the two FGTs as: FGTi FGTj

For example, the FGT

addObject('P','A', m1,_,_,void, 0,public,[],method)

that is used to add the method m1 inside the class

P.A is sequentially dependent on the FGT

addObject('P','A',_,_,_,_,_,public,_, class)

that is used to add the class A inside the package P,

because one first has to add the container (class

P.A) and before adding members inside it. The

sequential dependency between the two FGTs is

represented as:

addObject('P','A',_,_,_,_,_,public,_,class) 

addObject('P','A',m1,_,_,void,0,public,[], method)

In the proposed approach, the sequence of FGTs

that represent a specific refactoring are inserted

into one or more special data structures called an

FGT directed acyclic graph (FGT-DAGs). Each

node in the FGT-DAG represents one of the FGTs.

These FGTs are ordered in the FGT-DAG

according to their sequential dependencies. All the

possible sequential dependencies between all the

FGTs that are used in the approach have been

catalogued. There is no dependency between the

different FGT-DAGs of a refactoring. As a result

they can be processed concurrently, thus increasing

the scope for parallelizing the refactoring

operations to be carried out on the class diagram.

FGTs for Primitive and Composite

Refactorings

Refactoring theory and tools assume that there

exists a finite set of primitive refactorings [12, 18

and 20]. A primitive refactoring is an atomic

refactoring that cannot be split into more

refactorings. For each primitive refactoring, a set of

preconditions exists that will guarantee behaviour

preservation of the system under consideration.

These preconditions are implemented inside the

refactoring tool and need to be checked before

applying the related refactoring.

A composite refactoring is a sequence of primitive

refactorings that need to be applied on the model as

one unit. This means that either all of the primitive

refactorings that constitute the composite

refactoring will be applied on the model; or, if there

is one of the preconditions of one of the including

primitive refactorings is not satisfied, then none of

the primitive refactorings will be applied. A

composite refactoring can be applied to the system

if all its constituent primitive refactorings can be

applied to the system. Because a composite

refactoring consists of primitive ones that preserve

system behaviour, the composite will also preserve

the behaviour of the system.

Our work in this paper shifts the granularity of

refactoring one level down: primitive refactorings

are constructed from a sequence of FGTs. The

relationship between primitive refactorings,

composite refactorings and FGTs is intuitively

reflected in Figure 3.b. Figure 3.a shows that a

composite refactoring is a sequence of primitive

ones, and each primitive refactoring can be defined

as a sequence of FGTs. Thus, each composite

refactoring can be carried out as a sequence of

FGTs.

Primitive Ref

Composite Ref

FGTs

Composite

Refactorings

Primitive

Refactorings

Fine-Grain

Transformations (FGTs)

Seq. Of

Seq. Of

(a) (b)

Figure 3. Primitive, composite refactorings and

FGTs.

Note that in most of the cases the precondition

conjuncts of the FGTs that the primitive consists of

PSYCHOLOGY AND EDUCATION (2021) 58(2): 4060-4069 ISSN: 00333077

4064

www.psychologyandeducation.net

are sufficient to cover the preconditions of that

primitive, so they are enough to ensure the

behaviour preservation of the system. However, in

some cases the precondition conjuncts of the FGTs

are alone not sufficient to preserve the behaviour of

the system. Behviour preservation is only

guaranteed if all the preconditions of the primitive

refactoring are satisfied. In recognition of this fact,

and to keep our approach general and thus leave the

door open to define new refactorings in the future

we define -as shown in Figure 4.a- the set of

preconditions for each primitive refactoring at two

different levels:

a. FGT-Level Preconditions: The set of

precondition conjuncts that are defined at the level

of FGTs.

b. Refactoring-Level Preconditions: The set of

precondition conjuncts that are defined at the level

of the whole refactoring. This set contains

preconditions that are not covered by (cannot be

extracted from) the precondition conjuncts of the

FGTs from which the refactoring is constructed.

In the present text, the focus is on preconditions.

However, post-conditions can also be viewed as

being at the refactoring-level as well as at the FGT-

level. These notions are abstractly portrayed in

Figures 4.a and 4.b with respect to our approach

and previous approaches respectively.

FGT

FGT

FGT

FGT

FGT

FGT

FGT

P
r
im

it
iv

e
 R

e
fa

c
to

r
in

g

FGT FGTx

FGT

FGT FGT

FGT Level

 Preconditions

Ref. Level Preconditions

Ref. Level Postconditions

FGT Level

Postconditions

BLACK BOX

P
r
im

it
iv

e
 R

e
fa

c
to

r
in

g

Preconditions

 Postconditions

BLACK BOX

(a) (b)

Figure 4. Primitive refactoring different

considerations

Motivated Example

To illustrate our approach, the composite

refactoring encapsulateAttribute—which is used to

prevent direct accesses to a specific attribute—will

be given as an example.

Figure 5.a gives a UML class diagram for a

simplified College system. The system has a

package called College with three classes Teacher,

Student and Registration. Note that the information

extracted from the class diagram alone is not

sufficient for refactoring. For example, if a method

m is to be deleted from the class diagram using the

primitive refactoring deleteMethod, then that

method should be not referenced by any other

object elements in the class diagram, and this kind

of referencing information is not in the UML class

diagram. The underlying logic representation of the

class diagram should include this kind of extra

information. To get such information we have to

refer to the code level implementation of the

system. Figure 5.a shows such information

represented as dashed arrows between the different

object elements of the class diagram.

Suppose that one of the suggested enhancement to

the class diagram of the College system is to

encapsulate the attribute Mark in the Student class.

This refactoring is useful for increasing

modularity, by avoiding direct accesses of the local

state of a Student. For this restructuring we use the

composite refactoring encapsulateAttribute. The

composite encapsulateAttribute includes the

following actions:

- Add getter and setter methods. This is done by

using the primitive refactorings addGetter and

addSetter.

- Replace accesses to the attribute by calls to the

newly created methods. This is done by using

the primitive refactorings

attributeReadToMethodCall and

attributeWriteToMethodCall.

- Make the attribute private. This is done by

using the primitive refactoring

changeAttributeAccess.

+ID : String

+Name : String

+Mark : Integer

Student

+viewStMark() : void

+insertStMark() : void

Teacher

read

write

+reportResults() : void

Registration

re
ad

+getMark() : Integer

+setMark(in m : Integer) : void

+ID : String

+Name : String

+Mark : Integer

Student

+viewStMark() : void

+insertStMark() : void

Teacher

ca
ll

ca
ll

+reportResults() : void

Registration

ca
ll

read

write

(a)

(b)

-

Figure 5. A simplified UML class diagram of a

college system. (a) before refactoring and (b) after

refactoring

The order of the primitive refactorings inside the

composite is shown in Figure 6. Note that the order

reflects the sequential dependency that exist

between the different refactorings inside the

composite. According to the order, a refactoring

PSYCHOLOGY AND EDUCATION (2021) 58(2): 4060-4069 ISSN: 00333077

4065

www.psychologyandeducation.net

tool should first add the getter and setter methods.

Then it should redirect the destination of all the

read/write accesses from the attribute to them.

After this stage, the attribute is not referenced by

any object in the system. The refactoring tool can

therefore change the access mode of the attribute

from public to private.

Figure 6. encapsulateAttribute composite

refactoring

In our refactoring tool, in order to encapsulate the

attribute College.Student.Mark, we call the

procedure:

encapsulateAttribute('College','Student', 'Mark')

where the three arguments in the procedure refer to

the name of the attribute College.Student.Mark to

be encapsulated. For each one of the primitive

refactorings that are included in the composite

encapsulateAttribute (shown in Figure 6, and also

in the left column of Table 1) the

encapsulateAttribute procedure will produce a

sequence of FGTs which represents the

transformation actions to be performed as part of

the encapsulation process. These FGTs are shown

in the right column of the table.

Table 1. encapsulateAttribute Refactoring

Sequence Of Primitive

Refactorings
Sequence Of FGTs For Each Primitive Refactoring

addGetter('College',

'Student', 'Mark')

FGT1:addObject(College,Student, getMark,_,_,int,1,public,[],method)

FGT2:addRelation(_,College,Student,getMark,_,[],method,College,Student,Mark,

,, attribute, read)

addSetter('College',

'Student', 'Mark')

 FGT3:addObject(College,Student,setMark,_,_,void,0,public,[(p,(int,1))],method)

 FGT4:addRelation(_,College,Student,setMark,_,[int],method,College,

Student, Mark,_,_, attribute,write)

attributeReadToMethod

Call('College', 'Student',

'Mark', 'College',

'Student',getMark, [])

 FGT5:deleteRelation(_,College,Teacher,viewStMark,_,[],method, College,

Student, Mark,_,_, attribute,read)

 FGT6:deleteRelation(_,College,Registration, reportResults,_,[],method,

College,Student,Mark,_,_,attribute, read)

 FGT7:addRelation(_,College,Teacher,

viewStMark,_,[],method,College,Student,getMark,_,[],method,call)

FGT8:addRelation(_,College,Registration,reportResults,_,[],method,College,Stude

nt,getMark,_,[],method, call)

attributeWriteToMetho

dCall('College',

'Student', 'Mark',

'College', 'Student',

setMark, [int])

FGT9:deleteRelation(_,College,Teacher,insertStMark,_,[],method,College,Student,

Mark,_,_,attribute,write)

FGT10:addRelation(_,College,Teacher,insertStMark,_,[],method,College, Teacher,

setMark, _,[int], method, write)

changeAttributeAccess(

'College','Student','Mark

', private)

 FGT11:changeOAMode(College,Student,Mark,_,_,attribute,public, private)

For example, in the primitive refactoring

attributeReadToMethodCall that has the following

format:

attributeReadToMethodCall(Destx, Desty)

any read access from anywhere in the system to the

destination Destx will be redirected to a new

destination Desty. This means that for each read

access, two FGT operations will be produced, one

to delete the original read access "read relation"

PSYCHOLOGY AND EDUCATION (2021) 58(2): 4060-4069 ISSN: 00333077

4066

www.psychologyandeducation.net

from the source S to the destination Destx, this is

done by FGT:

deleteRelation(_, S, Destx, read)

and the other to add a new read access from the

source S to the new distention Desty, this is done by

FGT:

addRelation(_, S, Desty, read)

In the College system, the attribute Student.Mark

has two read accesses: one from the method

Teacher.viewStMark; and the other from the

method Registration.reportResults. This means

that four FGTs will be produced by this refactoring:

FGT5, FGT6, FGT7 and FGT8 as shown in right

column of Table 1.

FGTs produced by each primitive refactoring in the

composite are then allocated to one or more FGT-

DAGs; each according to its specific sequential

dependencies. Thus, sequential dependencies

between the different FGTs in the different

primitive refactorings have to be found. After that

the reduction algorithm is executed on these FGT-

DAGs to remove any redundancies between the

different FGTs. At the end of these actions, the

composite refactoring encapsulateAttribute will be

represented as shown in Figure 7.

changeAttribute

Access

attributeReadToMethodCall

addSetter

encapsulateAttribute Composite Refactoring

FGT3

FGT4

addGetter

FGT1

FGT2

attributeWriteTo

MethodCall

FGT9

FGT10

FGT5 FGT6 FGT7 FGT8

FGT11

(a)

encapsulateAttribute Composite Refactoring

FGT3

FGT4

FGT1

FGT2

FGT9

FGT10

FGT5 FGT6 FGT7 FGT8

FGT11

(b)

Figure 7. encapsulateAttribute Composite

Refactoring as represented in our approach

Figure 7.a shows from what primitive refactorings

each FGT comes from. Figure 7.b shows the

sequential dependencies between these FGTs. Note

that as shown in Figure 7.b the eleventh FGTs that

are generated by the composite

encapsulateAttribute are distributed among two

sequentially independent FGT-DAGs which gives

the possibility to apply the two FGT-DAGs

concurrently to the system.

IV. Features of the FGT approach

In this section we discuss the feature of using the

FGT paradigm as a formalization of class diagram

refactorings.

1. Remove Redundancies

One of the advantages of dealing with refactoring

as a sequence of FGTs is the ability to remove

redundancies between sequences of FGTs. We call

this process a reduction process. The final effect of

the sequence of FGTs on the class diagram after the

reduction process is the same as the effect of the

sequence without any reduction. Two types of FGT

reductions can be identified:

Absorb Reduction: This occurs when two FGTs are

absorbed by one that has the same effect of the two.

For example, suppose that the user wants to add

new method mx inside class P.A. To do this he uses

the FGT:

addObject('P','A',mx,_,_,void,0,public,[],method)

After that the same user or another one decides to

rename method mx in class P.A to another name my.

To do this he uses FGT:

renameObject('P','A', mx,_,[],method,my)

By the reduction process the two operations will be

absorbed into the single FGT:

addObject('P','A',my,_,_,void,0,public,[],method)

Cancel Reduction: This occurs when two FGTs

cancel each other. For example, suppose that the

user wants to add new method mx inside class P.A.

To do this he uses FGT:

addObject('P','A',mx,_,_,void,0,public,[],method)

After that the same user or another one for some

reason decides to delete the method mx from class

P.A. To do this he uses FGT:

deleteObject('P','A', mx,_,[],method)

By the reduction process, the two operations will

be removed from the FGT sequence. In general, the

reduction process increases the efficiency of the

refactoring algorithm by reducing the number of

FGTs that need to be applied on the model.

2. Detect & Resolve Conflicts

Conflicts between multiple refactorings can be

managed at the level of FGTs rather than at the

PSYCHOLOGY AND EDUCATION (2021) 58(2): 4060-4069 ISSN: 00333077

4067

www.psychologyandeducation.net

level of the whole refactorings. Conflict between

FGTi and FGTj occurs when it is the case that

applying them in any order will make the later one

inapplicable. For example,

addObject('P','A',mx,_,_,void,0,public,[],method)

 and

renameObject('P','A', my,_,[],method, mx)

are in conflict (mutually exclusive), because

applying any one will prohibit applying the other.

The tool can discover the first occurrence of

conflict between the two refactorings which gives

the ability to resolve this conflict later.

3. Find Sequential dependencies

Sequential dependencies between multiple

refactorings can be managed at the level of FGTs

rather than at the level of the whole refactoring.

Sequential dependency between two FGTs, FGTi

and FGTj (FGTjFGTi) occurs when FGTi is not

applicable (its preconditions are not satisfied) but

if FGTj is applied first, then FGTi will become

applicable. In this case we say that FGTi is

sequentially dependent on FGTj. For example,

renameObject('P','A',mx,_,[],method,my)

sequentially depends on

addObject('P','A',mx,_,_,void,0,public,[],method)

because if the method mx is not in class P.A, then

one first has to add it to the class P.A, before

attempting to rename it. The tool can discover at

what specific point or points the two refactorings

are sequentially dependent.

4 Increasing Parallelizing opportunities

Parallelizing opportunities in our approach are

automatically manifested at the time of refactoring

or during the process of detecting conflicts,

removing redundancies and finding sequential

dependencies between refactorings. This is

basically because the FGTs for a refactoring may

be assigned to one of multiple FGT-DAGs,

depending on the sequentially dependency between

these FGTs. These FGT-DAGs are independent

and can be managed concurrently.

5. Build new Refactorings

In a refactoring tool based on FGTs, end users will

be able to build their own refactorings without a

need to write code. This is a very important feature

because the list of possible refactorings is

undetermined, and no tool vendor can support the

end users with all their needs. Our approach solves

this shortage by giving the end users the ability to

construct new refactorings by using the set of the

low level FGTs. To create a new refactoring: the

end user need just to select the sequence of FGTs

needed to construct his refactoring. The new

refactoring will be given a name, list of input

parameters, and can be saved in the refactoring tool

for a later use.

FGTRefClass TOOL: Evaluation and Testing

Because of its overall suitability for prototyping, it

was decided to build our refactoring tool

FGTRefClass based on Prolog to experiment with

FGT-based refactoring concepts. This decision was

partially inspired by the JTRANSFORMER tool

described in [13], which represents Java code as

Prolog facts, and executes refactoring by

manipulating these facts. The decision also means

that many of the explanations relating to FGT-

based refactoring can be given by referring to the

Prolog facts (logic-terms) that have been used as

data for the tool.

Fig 8 describes the architecture of our class

diagram refactoring tool. The tool takes the XML

document of the class diagram as input. Then it

extracts the Prolog facts (or logic-terms) from the

XML document. The vocabulary extracted is

limited to a set of facts to represent commonly

referenced objects (i.e. packages, classes,

attributes, methods, and parameters) and relations

(i.e. extensions, associations, reads, writes, calls,

types) within or between the object elements in

UML class diagrams.

PSYCHOLOGY AND EDUCATION (2021) 58(2): 4060-4069 ISSN: 00333077

4068

www.psychologyandeducation.net

FGTRefClass TOOL

Refactoring Package

Class Diagram

(XML Document)

Before Refactoring

Sequence Diagram

(XML Document)

Before Refactoring

Composite

Refactoring

Primitive

Refactorings

FGTs

Transformations

Prolog Facts

(Before Refactorings)
Sequence OfSequence Of

Prolog Facts

(After Refactorings)

P
ro

lo
g

 F
ac

ts
 E

x
tr

ac
ti

o
n

s

FGTs Execution

on

Prolog Facts

XML Document Extraction

Class Diagram

(XML Document)

After Refactoring

Sequence Diagram

(XML Document)

After Refactoring

4

1

5

23

Figure 8. Architecture of our FGTRefClass TOOL

However, it turns out that the conventionally

available UML class diagram information is

inadequate for implementing the full range of

refactorings mentioned in the literature. Some

refactorings require, in addition, access

information—i.e. information that shows call

relationships between methods and read or write

relationships between methods and attributes. This

need for augmenting UML class diagram

information with additional access information was

also recognized in the graph-based approach to

refactoring, pioneered by Mens [14]. In

FGTRefClass tool, access information is gotten

from the sequence diagrams.

When the developer asks the tool to apply a specific

refactoring on the stored Prolog facts, then the

Refactoring Package Module works here. The

module will extract all the sequences of FGTs for

that refactoring. These FGTs will be applied one

after another on the system. The output of this

process will be in the form of XML document of

the restructured class diagram.

Conclusions

This paper investigated the feasibility of using FGT

paradigm as a formal specification of UML class

diagram refactorings. The approach defines and

executes class diagram refactorings as a set of

FGTs and manages sequential dependencies,

conflicts and redundancies at the level of these low

level operations. In addition, it gives the end users

the ability to build new refactorings without having

to write a code.

References

[1] Astels, D. (2002), Refactoring with UML, In:

Proc. Int'l Conf. eXtreme Programming and

Flexible Processes in Software Engineering

(pp. 67-70).

[2] Bottoni, P., Parisi-Presicce, F., & Taentzer,

G. (2002). Coordinated distributed diagram

transformation for software evolution,

Electronic Notes in Theoretical Computer

Science 72(4).

[3] Cuny, J., Ehrig, H., Engels, G., & Rozenberg,

G. (1996). editor "Graph Grammars and

Their Application to Computer Science,"

Lecture Notes in Computer Science 1073,

Springer-Verlag.

[4] Engels, G., Hartmut, E., & Rozenberg, G.

(1996). editors, "Special Issue on Graph

Transformations", Fundamenta Informaticae

26 (3,4), IOS Press.

[5] Ehrig, H., Engels, G., Kreowski, J., &

Rozenberg, G. (2000). editors, "Theory and

Application to Graph Transformations,"

Lecture Notes in Computer Science

1764,Springer-Verlag.

[6] Fowler, M. (1999), Refactoring: Improving

the Design of Existing Code. Addison-

Wesley.

[7] Jahnke, J., & Zundorf, A. (1997). Rewriting

poor design patterns by good design patterns,

in: S. Demeyer and H. Gall,editors, Proc. of

ESEC/FSE '97 Workshop on Object-

Oriented Reengineering, Technical

University of Vienna,Technical Report

TUV-1841-97-10.

[8] Kniesel, G. (2006), A logic foundation for

conditional program transformations.

PSYCHOLOGY AND EDUCATION (2021) 58(2): 4060-4069 ISSN: 00333077

4069

www.psychologyandeducation.net

Technical report no IAI-TR-2006-01,ISSN

0944-8535,CS Dept III.

[9] Kniesel, G. & Koch, H. (2004). Static

composition of refactorings. Science of

Computer Programming, 52:9-51.

[10] Mens, T. (1999), A formal foundation for

object-oriented software evolution. PhD

thesis, Vrije Universiteit Brussel.

[11] Mens, T. (2005), “On the use of graph

transformations for model refactoring,” in

Generative and transformational techniques

in software engineering (J. V. Ralf

Lämmel,Joao Saraivaed.), pp. 67–98,

Departamento di Informatica,Universidade

do Minho.

[12] Mens, T., Van Eetvelde, N., Demeyer, S., &

Janssens, D. (2005). Formalizing

refactorings with graph transformations.

Journal on Software Maintenance and

Evolution 17(4), 247–276, Wiley.

[13] Mens, T., Van Gorp, P., ,Varró, D., & Karsai,

G. (2005). “Applying a model transformation

taxonomy to graph transformation

technology,” in Proc. Int’l Workshop on

Graph and Model Transformation

(GraMoT2005).

[14] Mens, T., Demeyer, S., & Janssens, D.

(2002). “Formalising behaviour preserving

program transformations,” in Graph

Transformation, Lecture Notes in Computer

Science, vol. 2505, pp. 286-301, Springer-

Verlag.

[15] Mens, T. & Tourwe', T. (2004). A survey of

software refactoring. IEEE Transactions on

Software Engineering, vol. 30 n.2, p. 126-

139.

[16] Object Management Group (2005), “Unified

Modeling Language: Infrastructure version

2.0.” formal/2005-07-05.

[17] Opdyke, W., & Johnson R. (1993). Creating

abstract superclasses by refactoring.

Proceedings ACM Computer Science

Conference. ACM Press, pp. 66-73.

[18] Opdyke, W. (1992), Refactoring object-

oriented frameworks. Ph.D. thesis.

University of Illinois at Urbana-Champaign.

[19] Porres, I. (2003), Model refactorings as rule-

based update transformations. Proceedings

of UML 2003 Conference, pages 159-174.

[20] Roberts, D. (1999), Practical Analysis for

Refactoring. PhD thesis, University of

Illinois at Urbana-Champaign

[21] Roberts, D., Brant, J., & Johnson, R. (1997).

A refactoring tool for smalltalk. Theory and

Practice of Object Systems, vol. 3, no. 4, pp.

253-263.

[22] Saadeh, E., Derrick G. (2013). Refactoring

With Ordered Collections Of Fine-Grain

Transformations. International Journal of

Software Engineering and Knowledge

Engineering. Volume 23, Issue 03, pp. 309-

339, April 2013. DOI:

10.1142/S0218194013500095.

[23] Sunyé, G., Pollet, D., Le Traon, Y., &

Jézéquel, J.-M. (2001). Refactoring UML

models, In: Proc. Int’l Conf. Unified

Modeling Language (pp. 134-138), LNCS

2185, Springer.

http://www.worldscientific.com/worldscinet/ijseke
http://www.worldscientific.com/worldscinet/ijseke
http://www.worldscientific.com/worldscinet/ijseke

	Introduction
	FGTs-Based Approach
	FGTs for Primitive and Composite Refactorings
	Motivated Example
	IV. Features of the FGT approach
	FGTRefClass TOOL: Evaluation and Testing
	Conclusions
	References

